Diophantine conditions in small divisors and transcendental number theory

被引:0
|
作者
Garcia, EM
Pérez-Marco, R
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
Small Divisors; transcendental number theory; Liouville Fields; base of Neperian Logarithm; simultaneous diophantine approximations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present analogies between Diophantine conditions appearing in the theory of Small Divisors and classical Transcendental Number Theory. Let K be a number field. Using Bertrand's postulate, we give a simple proof that e is transcendental over Liouville fields K(theta) where theta is a Liouville number with explicit very good rational approximations. The result extends to any Liouville field K(Theta) generated by a family Theta of Liouville numbers satisfying a Diophantine condition (the transcendence degree can be uncountable). This Diophantine condition is similar to the one appearing in Moser's theorem of simultanneous linearization of commuting holomorphic germs.
引用
收藏
页码:1401 / 1409
页数:9
相关论文
共 50 条