REFINING A REGION BASED ATTENTION MODEL USING EYE TRACKING DATA

被引:8
|
作者
Liang, Zhen [1 ]
Fu, Hong [1 ]
Chi, Zheru [1 ]
Feng, Dagan [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Ctr Multimedia Signal Proc, Hong Kong, Hong Kong, Peoples R China
关键词
Visual attention model; eye tracking data; genetic algorithm; fixation mask; regions of interest; DRIVEN IMAGE INTERPRETATION; VISUAL-ATTENTION; SCENE;
D O I
10.1109/ICIP.2010.5651804
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computational visual attention modeling is a topic of increasing importance in machine understanding of images. In this paper, we present an approach to refine a region based attention model with eye tracking data. This paper has three main contributions. (1) A concept of fixation mask is proposed to describe the region saliency of an image by weighting the segmented regions using importance measures obtained in the Human Visual System (HVS) or computational models. (2) A Genetic Algorithm (GA) scheme for refining a region based attention model is proposed. (3) An evaluation method is developed to measure the correlation between the result from the computational model and that from the HVS in terms of fixation mask.
引用
收藏
页码:1105 / 1108
页数:4
相关论文
共 50 条
  • [1] Visual Attention Region Prediction Based on Eye Tracking Using Fuzzy Inference
    Wang, Mao
    Maeda, Yoichiro
    Takahashi, Yasutake
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2014, 18 (04) : 499 - 510
  • [2] Classification of Autism Spectrum Disorder Severity Using Eye Tracking Data Based on Visual Attention Model
    Revers, Mirian C.
    Oliveira, Jessica S.
    Franco, Felipe O.
    Portolese, Joana
    Cardoso, Thiago, V
    Silva, Andreia F.
    Machado-Lima, Ariane
    Nunes, Fatima L. S.
    Brentani, Helena
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 142 - 147
  • [3] Markov chain based computational visual attention model that learns from eye tracking data
    Zhong, Ma
    Zhao Xinbo
    Zou Xiao-chun
    Wang, James Z.
    Wang Wenhu
    PATTERN RECOGNITION LETTERS, 2014, 49 : 1 - 10
  • [4] Revisiting Visual Attention Identification Based on Eye Tracking Data Analytics
    Zhang, Yingxue
    Chen, Zhenzhong
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [5] An eye-tracking attention based model for abstractive text headline
    Xie, Jiehang
    Wang, Xiaoming
    Wang, Xinyan
    Pang, Guangyao
    Qin, Xueyang
    COGNITIVE SYSTEMS RESEARCH, 2019, 58 (253-264): : 253 - 264
  • [6] Brain Region-Based Vigilance Assessment Using Electroencephalography and Eye Tracking Data Fusion
    Abu Farha, Nadia
    Al-Shargie, Fares
    Tariq, Usman
    Al-Nashash, Hasan
    IEEE ACCESS, 2022, 10 : 112199 - 112210
  • [7] AUTOMATIC QUERY REFINING BASED ON EYE-TRACKING FEEDBACK
    Martonova, Alena
    Marcin, Jozef
    Navrat, Pavol
    Tvarozek, Jozef
    Grmanova, Gabriela
    COMPUTING AND INFORMATICS, 2019, 38 (06) : 1341 - 1374
  • [8] Attention-based video reframing: validation using eye-tracking
    Chamaret, Christel
    Le Meur, Olivier
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 1450 - 1453
  • [9] Visual Attention Identification Using Random Walks Based Eye Tracking Protocols
    Chen, Xiu
    Chen, Zhenzhong
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 6 - 9
  • [10] Exploring visual attention using random walks based eye tracking protocols
    Chen, Xiu
    Chen, Zhenzhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 45 : 147 - 155