Weak type (1,1) bounds for a class of the Littlewood-Paley operators

被引:3
|
作者
Ding, Y [1 ]
Xue, QY
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
Littlewood-Paley; g(lambda)(*) function; area integral; weak boundedness;
D O I
10.2969/jmsj/1160745821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the authors give the weak type (1,1) boundedness and the L-p boundedness of a class of the parametrized Littlewood-Paley operators. These conclusions improve and complete some known results.
引用
收藏
页码:183 / 194
页数:12
相关论文
共 50 条
  • [1] WEAK TYPE (1,1) BEHAVIOR FOR THE LITTLEWOOD-PALEY g-FUNCTION
    Lai, Xudong
    COLLOQUIUM MATHEMATICUM, 2023, 171 (02) : 285 - 302
  • [2] Weighted weak type (1,1) estimates for singular integrals and Littlewood-Paley functions
    Fan, D
    Sato, S
    STUDIA MATHEMATICA, 2004, 163 (02) : 119 - 136
  • [3] Weak (1,1) estimates for Littlewood-Paley functions with rough kernals
    Sato, S
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 83 - 87
  • [4] Weak and Strong Type Estimates for the Multilinear Littlewood-Paley Operators
    Cao, Mingming
    Hormozi, Mahdi
    Ibanez-Firnkorn, Gonzalo
    Rivera-Rios, Israel P.
    Si, Zengyan
    Yabuta, Kozo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
  • [5] Weighted estimate for a class of Littlewood-Paley operators
    Xue, Qingying
    Ding, Yong
    Yabuta, Kozo
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 339 - 365
  • [6] Sharp asymptotic estimates for a class of Littlewood-Paley operators
    Bakas, Odysseas
    STUDIA MATHEMATICA, 2021, 260 (02) : 195 - 206
  • [7] On multilinear Littlewood-Paley operators
    Chen, Xi
    Xue, Qingying
    Yabuta, Kozo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 25 - 40
  • [8] Commutators of Littlewood-Paley operators
    Chen YanPing
    Ding Yong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2493 - 2505
  • [9] Commutators of Littlewood-Paley operators
    CHEN YanPing1 & DING Yong2
    Science China Mathematics, 2009, (11) : 2493 - 2505
  • [10] LITTLEWOOD-PALEY OPERATORS ON BMO
    KURTZ, DS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) : 657 - 666