Triboelectric nanogenerator based E-skin for wearable energy harvesting and pressure sensing

被引:2
|
作者
Park, Jiwon [1 ,2 ]
Kim, Daeun [1 ,2 ]
Kim, Youn Tae [1 ,2 ]
机构
[1] Chosun Univ, IT Fus Technol Res Ctr, Gwangju, South Korea
[2] Chosun Univ, Dept IT Fus Technol, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/NANO51122.2021.9514293
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The market for wearable sensors is growing rapidly as interest in personal health has recently increased, and the Internet of Things (IoT) has developed. However, supplying power to wearable sensors, such as body-attached flexible devices and E-skin, is still a matter of concern. Herein, we report a triboelectric nanogenerator (TENG)-based E-skin that can harvest bio-friendly energy and self-powered pressure sensing with its own power source. Au-coated Cu yarn and polytetrafluoroethylene-molded micro-patterned polydimethylsiloxane were used to fabricate E-skin with excellent stability, high sensitivity, elasticity, and flexibility. The TENG-based E-skin generates an output peak voltage and current of up to 200 V and 2.7 mu A, respectively, and is stable with 4,500 cycles of pushing motion without any deterioration of the output signal. In addition, it is possible to operate an electronic watch by charging a capacitor and measuring the arterial pulse of the wrist as a pressure sensor. The results of this study present potential solutions for power source and signal monitoring within soft/wearable devices and human-machine interfaces.
引用
收藏
页码:306 / 309
页数:4
相关论文
共 50 条
  • [1] Soft and transparent triboelectric nanogenerator based E-skin for wearable energy harvesting and pressure sensing
    Park, Jiwon
    Kim, Daeun
    Kim, Youn Tae
    [J]. NANOTECHNOLOGY, 2021, 32 (38)
  • [2] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    [J]. ACTA PHYSICA SINICA, 2020, 69 (17)
  • [3] Wearable Triboelectric Nanogenerator with Ground-Coupled Electrode for Biomechanical Energy Harvesting and Sensing
    Su, Kangyu
    Lin, Xiaobo
    Liu, Zhangwei
    Tian, Yun
    Peng, Zhengchun
    Meng, Bo
    [J]. BIOSENSORS-BASEL, 2023, 13 (05):
  • [4] A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing
    Dong, Kai
    Wu, Zhiyi
    Deng, Jianan
    Wang, Aurelia C.
    Zou, Haiyang
    Chen, Chaoyu
    Hu, Dongmei
    Gu, Bohong
    Sun, Baozhong
    Wang, Zhong Lin
    [J]. ADVANCED MATERIALS, 2018, 30 (43)
  • [5] A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Wu, Fan
    Li, Congju
    Yin, Yingying
    Cao, Ran
    Li, Hui
    Zhang, Xiuling
    Zhao, Shuyu
    Wang, Jiaona
    Wang, Bin
    Xing, Yi
    Du, Xinyu
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01):
  • [6] Skin-integrated, stretchable triboelectric nanogenerator for energy harvesting and mechanical sensing
    Zhao, Ling
    Lin, Zihong
    Lai, King Wai Chiu
    [J]. MATERIALS TODAY ELECTRONICS, 2022, 2
  • [7] Wearable nanofiber-based triboelectric nanogenerator for body motion energy harvesting
    Li, Wenjian
    Sengupta, Debarun
    Pei, Yutao
    Kottapalli, Ajay Giri Prakash
    [J]. PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (FLEPS), 2021,
  • [8] Marine monitoring based on triboelectric nanogenerator: Ocean energy harvesting and sensing
    Hao, Yutao
    Li, Xiangmeng
    Chen, Baodong
    Zhu, Zhiyuan
    [J]. FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [9] A Skin-Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting
    You, Aimei
    Zhang, Xieli
    Peng, Xiao
    Dong, Kai
    Lu, Yuyuan
    Zhang, Qiang
    [J]. MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (08)
  • [10] Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
    Pu, Xiong
    Liu, Mengmeng
    Chen, Xiangyu
    Sun, Jiangman
    Du, Chunhua
    Zhang, Yang
    Zhai, Junyi
    Hu, Weiguo
    Wang, Zhong Lin
    [J]. SCIENCE ADVANCES, 2017, 3 (05):