Kink-Type Solution for One Modification of the Regularized Long-Wave Equation

被引:0
|
作者
Knyazev, M. A. [1 ]
机构
[1] Belarusian Natl Tech Univ, Minsk, BELARUS
关键词
kink; regularized long-wave equation; Hirota's method; MODEL-EQUATIONS;
D O I
10.1007/s11182-021-02365-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
[No abstract available]
引用
收藏
页码:761 / 762
页数:2
相关论文
共 50 条
  • [1] Kink-Type Solution for One Modification of the Regularized Long-Wave Equation
    M. A. Knyazev
    Russian Physics Journal, 2021, 64 : 761 - 762
  • [2] A finite difference solution of the regularized long-wave equation
    Kutluay, S.
    Esen, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2006, 2006 (1-14) : 1 - 14
  • [3] FOURIER PSEUDOSPECTRAL SOLUTION OF THE REGULARIZED LONG-WAVE EQUATION
    SLOAN, DM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (02) : 159 - 179
  • [4] NUMERICAL-SOLUTION OF REGULARIZED LONG-WAVE EQUATION
    JAIN, PC
    SHANKAR, R
    SINGH, TV
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (07): : 579 - 586
  • [5] REGULARIZED LONG-WAVE EQUATION
    SHIVAMOGGI, BK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (01): : 55 - 56
  • [6] Extension Condition to Evaluate Solution of the Regularized Long-Wave Equation
    Suksai, Sirirat
    Humphries, U. W.
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (02): : 393 - 403
  • [7] Evolution of solitary-wave solution of the perturbed regularized long-wave equation
    Shivamoggi, BK
    Rollins, DK
    CHAOS SOLITONS & FRACTALS, 2002, 13 (05) : 1129 - 1136
  • [8] Solitary wave solutions for the regularized long-wave equation
    Irk, D.
    PHYSICS OF WAVE PHENOMENA, 2012, 20 (03) : 174 - 183
  • [9] Solitary wave solutions for the regularized long-wave equation
    D. Irk
    Physics of Wave Phenomena, 2012, 20 : 174 - 183
  • [10] Study of the generalization of regularized long-wave equation
    Yue Kai
    Jialiang Ji
    Zhixiang Yin
    Nonlinear Dynamics, 2022, 107 : 2745 - 2752