A cut-free sequent calculus for Bi-intuitionistic logic

被引:0
|
作者
Buismani, Linda [1 ]
Gore, Rajeev [1 ,2 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] NICTA, Canberra Res Lab, Logic & Computat Programme, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bi-intuitionistic logic is the extension of intuitionistic logic with a connective dual to implication. Bi-intuitionistic logic was introduced by Rauszer as a Hilbert calculus with algebraic and Kripke semantics. But her subsequent "cut-free" sequent calculus for BiInt has recently been shown by Uustalu to fail cut-elimination. We present a new cut-free sequent calculus for BiInt, and prove it sound and complete with respect to its Kripke semantics. Ensuring completeness is complicated by the interaction between implication and its dual, similarly to future and past modalities in tense logic. Our calculus handles this interaction using extended sequents which pass information from premises to conclusions using variables instantiated at the leaves of failed derivation trees. Our simple termination argument allows our calculus to be used for automated deduction, although this is not its main purpose.
引用
收藏
页码:90 / +
页数:2
相关论文
共 50 条