QSAR analysis of estrogen receptor ligands using neural networks

被引:0
|
作者
Elkhou, K
Afifi, AI
Kabbaj, M
Villemin, D
Cherqaoui, D
机构
[1] Univ Cadi Ayyad, Fac Sci, Dept Chim, Marrakech, Morocco
[2] Univ Hassan 2, Ecole Super Technol, Casablanca, Morocco
[3] Fac Sci Ben Msik, LPCMC, Casablanca, Morocco
[4] Ecole Natl Super Ingenieurs, ISMRA, CNRS, UMR,LCMT, F-14050 Caen, France
来源
ACH-MODELS IN CHEMISTRY | 2000年 / 137卷 / 5-6期
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantitative structure-activity relationship analysis of estrogen receptor ligands were constructed by means of neural networks. Three layer networks were trained with the back-propagation algorithm to predict the relative binding affinity of 4-substituted deoxyhexestrol derivatives with estrogen receptor in lamb uterine. The relationships between structure and relative binding affinity were examined quantitatively using four molecular parameters (ClogP, MR, sigma and sigma (-)). The results obtained were compared to those given in the literature by the multiple linear regression, and were found to be better. The contribution of each descriptor to the structure-activity relationship was evaluated. Hydrophobicity of the molecule was thus found to take the most relevant part in the molecular description.
引用
收藏
页码:633 / 642
页数:10
相关论文
共 50 条
  • [1] Comparative QSAR analysis of estrogen receptor ligands
    Gao, H
    Katzenellenbogen, JA
    Garg, R
    Hansch, C
    CHEMICAL REVIEWS, 1999, 99 (03) : 723 - 744
  • [2] QSAR analysis of indazole estrogens as selective β-estrogen receptor ligands:: rationalization of physicochemical properties
    Gupta, A. K.
    Revathi, S.
    Soni, L. K.
    Kaskhedikar, S. G.
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2006, 58 : A57 - A57
  • [3] QSAR analysis of indazole estrogens as selective β-estrogen receptor ligands:: Rationalization of physicochemical properties
    Gupta, A. K.
    Jain, A.
    Jain, A.
    Agrawal, K.
    Saraswat, V.
    Revathi, S.
    Soni, L. K.
    Kaskhedikar, S. G.
    MEDICINAL CHEMISTRY, 2007, 3 (04) : 347 - 353
  • [4] Binary quantitative structure-activity relationship (QSAR) analysis of estrogen receptor ligands
    Gao, H
    Williams, C
    Labute, P
    Bajorath, J
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (01): : 164 - 168
  • [5] REGRESSION-ANALYSIS FOR QSAR USING NEURAL NETWORKS
    LIVINGSTONE, DJ
    SALT, DW
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1992, 2 (03) : 213 - 218
  • [6] Using QSAR techniques: Analysis of estradiolic ligand binding to the estrogen receptor
    Streeter, Lauren C.
    Garg, Rajni
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [7] LIV-3D-QSAR model for estrogen receptor ligands
    da Cunha, EFF
    Martins, RCA
    Albuquerque, MG
    de Alencastro, RB
    JOURNAL OF MOLECULAR MODELING, 2004, 10 (04) : 297 - 304
  • [8] LIV-3D-QSAR model for estrogen receptor ligands
    Elaine Fontes Ferreira da Cunha
    Rita Cristina Azevedo Martins
    Magaly Girão Albuquerque
    Ricardo Bicca de Alencastro
    Journal of Molecular Modeling , 2004, 10 : 297 - 304
  • [9] ANALYSIS OF LINEAR AND NONLINEAR QSAR DATA USING NEURAL NETWORKS
    MANALLACK, DT
    ELLIS, DD
    LIVINGSTONE, DJ
    JOURNAL OF MEDICINAL CHEMISTRY, 1994, 37 (22) : 3758 - 3767
  • [10] Receptor analysis using neural networks
    Dawidowski, LE
    Gómez, DR
    Reich, SL
    Vázquez, C
    AIR POLLUTION IX, 2001, 10 : 607 - 616