Sparse Vector Coding for 5G Ultra-Reliable and Low Latency Communications

被引:0
|
作者
Ji, Hyoungju [1 ]
Park, Sunho [1 ]
Shim, Byonghyo [1 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, INMC, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ultra reliable and low latency communication (URLLC) is a newly introduced service category in 5G to support delay-sensitive applications. In order to support this new service category, 3rd Generation Partnership Project (3GPP) sets an aggressive requirement that a packet should be delivered with 10(-5) block error rate within 1 ms transmission period. Since the current wireless standard designed to maximize the coding gain by transmitting capacity achieving long code-block is not relevant for this purpose, entirely new transmission strategy is required. In this paper, we propose a new approach to transmit short packet information, called sparse vector coding (SVC). Key idea behind the proposed method is to transmit the control channel information after the sparse vector transformation. By mapping the transmit information into the position of nonzero elements and then transmitting it after the random spreading, we obtain underdetermined sparse system for which the principle of compressed sensing can be applied. From the numerical evaluations on realistic channel setting and decoder performance analysis, we demonstrate that the proposed SVC technique is very effective in URLLC transmission and outperforms the 4G LTE and LTE-Advanced physical downlink control channel (PDCCH) scheme.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Enhanced Sparse Vector Coding for Ultra-Reliable and Low Latency Communications
    Kim, Wonjun
    Bandari, Shravan Kumar
    Shim, Byonghyo
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 5698 - 5702
  • [2] 5G FOR ULTRA-RELIABLE LOW-LATENCY COMMUNICATIONS
    Soldani, David
    Guo, Y. Jay
    Barani, Bernard
    Mogensen, Preben
    I, Chih-Lin
    Das, Sajal K.
    [J]. IEEE NETWORK, 2018, 32 (02): : 6 - 7
  • [3] Performance Evaluation of 5G Ultra-Reliable and Low Latency Communications
    Hao, Peng
    Han, Xianghui
    Xia, Shuqiang
    Ren, Min
    Deng, Yiwei
    [J]. 2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 1047 - 1052
  • [4] Sparse Vector Coding for Ultra Reliable and Low Latency Communications
    Ji, Hyoungju
    Park, Sunho
    Shim, Byonghyo
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (10) : 6693 - 6706
  • [5] Optimum Ultra-Reliable and Low Latency Communications in 5G New Radio
    Shao-Yu Lien
    Shao-Chou Hung
    Der-Jiunn Deng
    Yueh Jir Wang
    [J]. Mobile Networks and Applications, 2018, 23 : 1020 - 1027
  • [6] Optimum Ultra-Reliable and Low Latency Communications in 5G New Radio
    Lien, Shao-Yu
    Hung, Shao-Chou
    Deng, Der-Jiunn
    Wang, Yueh Jir
    [J]. MOBILE NETWORKS & APPLICATIONS, 2018, 23 (04): : 1020 - 1027
  • [7] Radio Access for Ultra-Reliable and Low-Latency 5G Communications
    Johansson, Niklas A.
    Wang, Y. -P. Eric
    Eriksson, Erik
    Hessler, Martin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION WORKSHOP (ICCW), 2015, : 1184 - 1189
  • [8] On the Multiplexing of Data and Metadata for Ultra-Reliable Low-Latency Communications in 5G
    Karimi, Ali
    Pedersen, Klaus I.
    Mahmood, Nurul Huda
    Berardinelli, Gilberto
    Mogensen, Preben
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 12136 - 12147
  • [9] Relaying-Enabled Ultra-Reliable Low-Latency Communications in 5G
    Hu, Yulin
    Gursoy, M. Cenk
    Schmeink, Anke
    [J]. IEEE NETWORK, 2018, 32 (02): : 62 - 68
  • [10] Proactive Resource Scheduling for 5G and Beyond Ultra-Reliable Low Latency Communications
    Dinh, Lam Ngoc
    Maman, Mickael
    Strinati, Emilio Calvanese
    [J]. 2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,