Learning Strengths and Weaknesses of Classifiers for RGB-D Semantic Segmentation

被引:0
|
作者
Fooladgar, Fahimeh [1 ]
Kasaei, Shohreh [1 ]
机构
[1] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
关键词
RGB-D segmentation; semantic scene labeling; 3D scene understanding;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D scene understanding is an open challenge in the field of computer vision. Most of the focus is on 2D methods in which the semantic labeling of each RGB pixel is considered. But, in this paper, the 3D semantic labeling of RGB-D images is considered. In the proposed method, to extract some meaningful features, the superpixel generation algorithm is applied to the RGB image to segment it into a set of disjoint pixels. After that, the set of three powerful classifiers are utilized to semantically label each superpixel. In the proposed method, the probability outputs of these classifiers are concatenated as the novel feature vector for each superpixel. Consequently, to analyze the strengths and weaknesses of each classifier, the conditional random field framework is used to improve the contextual relationships among neighboring superpixels. The unary potential function of the conditional random field is learned based on these new feature vectors. The proposed method is evaluated on the challenging NYU-V2 RGB-D dataset and improves the pixel average accuracy compared to previous methods.
引用
收藏
页码:176 / 179
页数:4
相关论文
共 50 条
  • [1] RGB-D SEMANTIC SEGMENTATION: A REVIEW
    Hu, Yaosi
    Chen, Zhenzhong
    Lin, Weiyao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [2] RGB×D: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    [J]. Neurocomputing, 2021, 462 : 568 - 580
  • [3] A brief survey on RGB-D semantic segmentation using deep learning*
    Wang, Changshuo
    Wang, Chen
    Li, Weijun
    Wang, Haining
    [J]. DISPLAYS, 2021, 70
  • [4] Joining geometric and RGB features for RGB-D semantic segmentation
    Zhang, Shaopeng
    Zhong, Min
    Zeng, Gang
    Gan, Rui
    [J]. 2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [5] RGBxD: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    [J]. NEUROCOMPUTING, 2021, 462 : 568 - 580
  • [6] Learning Common and Specific Features for RGB-D Semantic Segmentation with Deconvolutional Networks
    Wang, Jinghua
    Wang, Zhenhua
    Tao, Dacheng
    See, Simon
    Wang, Gang
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 664 - 679
  • [7] RGB-D Semantic Segmentation for Indoor Modeling Using Deep Learning: A Review
    Rached, Ishraq
    Hajji, Rafika
    Landes, Tania
    [J]. RECENT ADVANCES IN 3D GEOINFORMATION SCIENCE, 3D GEOINFO 2023, 2024, : 587 - 604
  • [8] 2.5D CONVOLUTION FOR RGB-D SEMANTIC SEGMENTATION
    Xing, Yajie
    Wang, Jingbo
    Chen, Xiaokang
    Zeng, Gang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1410 - 1414
  • [9] DEPTH REMOVAL DISTILLATION FOR RGB-D SEMANTIC SEGMENTATION
    Fang, Tiyu
    Liang, Zhen
    Shao, Xiuli
    Dong, Zihao
    Li, Jinping
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2405 - 2409
  • [10] Transformer fusion for indoor RGB-D semantic segmentation
    Wu, Zongwei
    Zhou, Zhuyun
    Allibert, Guillaume
    Stolz, Christophe
    Demonceaux, Cédric
    Ma, Chao
    [J]. Computer Vision and Image Understanding, 2024, 249