The minimum regularized covariance determinant estimator

被引:42
|
作者
Boudt, Kris [1 ,2 ,3 ]
Rousseeuw, Peter J. [4 ]
Vanduffel, Steven [2 ]
Verdonck, Tim [4 ,5 ]
机构
[1] Univ Ghent, Dept Econ, Ghent, Belgium
[2] Vrije Univ Brussel, Solvay Business Sch, Brussels, Belgium
[3] Vrije Univ Amsterdam, Sch Business & Econ, Amsterdam, Netherlands
[4] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
[5] Univ Antwerp, Dept Math, Antwerp, Belgium
关键词
Breakdown value; High-dimensional data; Regularization; Robust covariance estimation; MULTIVARIATE LOCATION; OUTLIER DETECTION; ROBUST; ALGORITHM; SCATTER; MATRIX;
D O I
10.1007/s11222-019-09869-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The minimum covariance determinant (MCD) approach estimates the location and scatter matrix using the subset of given size with lowest sample covariance determinant. Its main drawback is that it cannot be applied when the dimension exceeds the subset size. We propose the minimum regularized covariance determinant (MRCD) approach, which differs from the MCD in that the scatter matrix is a convex combination of a target matrix and the sample covariance matrix of the subset. A data-driven procedure sets the weight of the target matrix, so that the regularization is only used when needed. The MRCD estimator is defined in any dimension, is well-conditioned by construction and preserves the good robustness properties of the MCD. We prove that so-called concentration steps can be performed to reduce the MRCD objective function, and we exploit this fact to construct a fast algorithm. We verify the accuracy and robustness of the MRCD estimator in a simulation study and illustrate its practical use for outlier detection and regression analysis on real-life high-dimensional data sets in chemistry and criminology.
引用
收藏
页码:113 / 128
页数:16
相关论文
共 50 条
  • [1] The minimum regularized covariance determinant estimator
    Kris Boudt
    Peter J. Rousseeuw
    Steven Vanduffel
    Tim Verdonck
    [J]. Statistics and Computing, 2020, 30 : 113 - 128
  • [2] The Cellwise Minimum Covariance Determinant Estimator
    Raymaekers, Jakob
    Rousseeuw, Peter J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [3] Computation of the minimum covariance determinant estimator
    Pesch, C
    [J]. CLASSIFICATION IN THE INFORMATION AGE, 1999, : 225 - 233
  • [4] The minimum weighted covariance determinant estimator
    Roelant, Ella
    Van Aelst, Stefan
    Willems, Gert
    [J]. METRIKA, 2009, 70 (02) : 177 - 204
  • [5] The minimum weighted covariance determinant estimator
    Ella Roelant
    Stefan Van Aelst
    Gert Willems
    [J]. Metrika, 2009, 70
  • [6] ASYMPTOTICS FOR THE MINIMUM COVARIANCE DETERMINANT ESTIMATOR
    BUTLER, RW
    DAVIES, PL
    JHUN, M
    [J]. ANNALS OF STATISTICS, 1993, 21 (03): : 1385 - 1400
  • [7] The minimum weighted covariance determinant estimator revisited
    Kalina, Jan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 3888 - 3900
  • [8] A fast algorithm for the minimum covariance determinant estimator
    Rousseeuw, PJ
    Van Driessen, K
    [J]. TECHNOMETRICS, 1999, 41 (03) : 212 - 223
  • [9] RelaxMCD: Smooth optimisation for the Minimum Covariance Determinant estimator
    Schyns, M.
    Haesbroeck, G.
    Critchley, F.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 843 - 857
  • [10] The minimum covariance determinant estimator for interval-valued data
    Tian, Wan
    Qin, Zhongfeng
    [J]. STATISTICS AND COMPUTING, 2024, 34 (02)