Ultrasonic testing of thick and thin Inconel 625 alloys manufactured by laser powder bed fusion

被引:11
|
作者
Allam, A. [1 ]
Alfahmi, O. [1 ]
Patel, H. [1 ]
Sugino, C. [1 ]
Harding, M. [2 ]
Ruzzene, M. [3 ]
Erturk, A. [1 ]
机构
[1] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Tronosjet Mfg, Charlottetown, PE C1C 1N2, Canada
[3] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
关键词
Additive manufacturing; Non-destructive testing; Ultrasonic phased arrays; Laser Doppler vibrometry; Guided waves; LAMB WAVES; CRACK DETECTION; INSPECTION; DAMAGE; MICROSTRUCTURE; COMPONENTS; SCATTERING;
D O I
10.1016/j.ultras.2022.106780
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Additive manufacturing of alloys enables low-volume production of functional metallic components with complex geometries. Ultrasonic testing can ensure the quality of these components and detect typical defects generated during laser powder bed fusion (LPBF). However, it is difficult to find a single ultrasonic inspection technique that can detect defects in the large variety of geometries generated using LPBF. In this work, phased array ultrasonic testing (PAUT) is suggested to inspect thick LPBF components, while guided waves are explored for thin curved ones. PAUT is used to detect cylindrical lack of fusion defects in thick LPBF rectangular parts. Practical defects are generated by reducing the laser power at prespecified locations in the samples. The defects' shape and density are verified using optical microscopy and X-ray computed tomography. Partially fused defects down to 0.25 mm in diameter are experimentally detected using a 10 MHz PAUT probe with the total focusing method post-processing. The experimental results are compared to defect images predicted by finite element simulations. For thin components with curved geometry, guided waves are used to detect powder-filled cylindrical defects. The waves are generated using piezoelectric transducers, and the spatiotemporal wavefield is measured using a scanning laser Doppler vibrometer. Using root-mean-square imaging of the wavefield, defects down to 1 mm are clearly detected despite the complex internal features in the samples.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ultrasonic testing of thick and thin Inconel 625 alloys manufactured by laser powder bed fusion
    Allam, A.
    Alfahmi, O.
    Patel, H.
    Sugino, C.
    Harding, M.
    Ruzzene, M.
    Erturk, A.
    ULTRASONICS, 2022, 125
  • [2] High temperature embrittlement of Inconel 625 alloy manufactured by laser powder bed fusion
    Zhang, Hui
    Zhang, Daohua
    Zhu, Jiulong
    Ding, Molei
    An, Xudong
    Wu, Daijian
    Feng, Man
    Sha, Gang
    Hu, Wangyu
    Yang, Tengfei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 900
  • [3] Unexpectedly high corrosion susceptibility near fusion boundaries of Inconel 625 manufactured by laser powder bed fusion
    Zhu, Jie
    Kokawa, Hiroyuki
    Feng, Kai
    Li, Zhuguo
    CORROSION SCIENCE, 2023, 223
  • [4] Tailoring Microstructure and Mechanical Properties of Additively Manufactured Inconel 625 by Remelting Strategy in Laser Powder Bed Fusion
    Ledwig, Piotr
    Pasiowiec, Hubert
    Cichocki, Kamil
    Lisiecka-Graca, Paulina
    Gola, Kewin
    Wrobel, Rafal
    Dubiel, Beata
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (07): : 2485 - 2508
  • [5] Laser ultrasonic detection of submillimeter artificial holes in laser powder bed fusion manufactured alloys
    Xu, Zhao
    Tian, Qi
    Hu, Ping
    Li, Hui
    Shen, Shengnan
    OPTICS AND LASER TECHNOLOGY, 2024, 169
  • [6] Assessment of Residual Stresses in Laser Powder Bed Fusion Manufactured IN 625
    Paraschiv, Alexandru
    Matache, Gheorghe
    Vladut, Mihai
    MATERIALS, 2024, 17 (02)
  • [7] In situ microstructure analysis of Inconel 625 during laser powder bed fusion
    Schmeiser, Felix
    Krohmer, Erwin
    Wagner, Christian
    Schell, Norbert
    Uhlmann, Eckart
    Reimers, Walter
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (21) : 9663 - 9677
  • [8] Mechanical Behavior of Laser Powder Bed Fusion Processed Inconel 625 Alloy
    K. S. N. Satish Idury
    V. Chakkravarthy
    R. L. Narayan
    Transactions of the Indian National Academy of Engineering, 2021, 6 (4) : 975 - 990
  • [9] In situ microstructure analysis of Inconel 625 during laser powder bed fusion
    Felix Schmeiser
    Erwin Krohmer
    Christian Wagner
    Norbert Schell
    Eckart Uhlmann
    Walter Reimers
    Journal of Materials Science, 2022, 57 : 9663 - 9677
  • [10] Milling investigations and yield strength calculations for nickel alloy Inconel 625 manufactured with laser powder bed fusion process
    Kaushalendra Patel
    Jixiong Fei
    Guoliang Liu
    Tuğrul Özel
    Production Engineering, 2019, 13 : 693 - 702