Towards Robust Neuroadaptive HCI: Exploring Modern Machine Learning Methods to Estimate Mental Workload From EEG Signals

被引:17
|
作者
Appriou, Aurelien [1 ,2 ]
Cichocki, Andrzej [2 ,3 ]
Lotte, Fabien [1 ,2 ]
机构
[1] Univ Bordeaux, LaBRI CNRS INP, INRIA, Talence, France
[2] RIKEN BSI, Wako, Saitama, Japan
[3] SKOLTECH, Moscow, Russia
基金
欧洲研究理事会;
关键词
Mental Workload; Neuroadaptive technology; neuroergonomics; EEG; Machine Learning; Deep Learning; BrainComputer Interfaces;
D O I
10.1145/3170427.3188617
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating mental workload from brain signals such as Electroencephalography (EEG) has proven very promising in multiple Human-Computer Interaction (HCI) applications, e.g., to design games or educational applications with adaptive difficulty, or to assess how cognitively difficult to use an interface can be. However, current EEG-based workload estimation may not be robust enough for some practical applications. Indeed, the currently obtained workload classification accuracies are relatively low, making the resulting estimations not fully trustable. This paper thus studies promising modern machine learning algorithms, including Riemannian geometry-based methods and Deep Learning, to estimate workload from EEG signals. We study them with both user-specific and user-independent calibration, to go towards calibration-free systems. Our results suggested that a shallow Convolutional Neural Network obtained the best performance in both conditions, outperforming state-of-the-art methods on the used data sets. This suggests that Deep Learning can bring new possibilities in HCI.
引用
收藏
页数:6
相关论文
共 6 条
  • [1] Mental Workload Estimation from EEG Signals Using Machine Learning Algorithms
    Cheema, Baljeet Singh
    Samima, Shabnam
    Sarma, Monalisa
    Samanta, Debasis
    [J]. ENGINEERING PSYCHOLOGY AND COGNITIVE ERGONOMICS (EPCE 2018), 2018, 10906 : 265 - 284
  • [2] Exploring Machine Learning Approaches for Classifying Mental Workload using fNIRS Data from HCI Tasks
    Benerradi, Johann
    Maior, Horia A.
    Marinescu, Adrian
    Clos, Jeremie
    Wilson, Max L.
    [J]. HALFWAY TO THE FUTURE SYMPOSIUM (HTTF 2019), 2019,
  • [3] Classification of mental tasks from EEG signals using extreme learning machine
    Liang, NY
    Saratchandran, P
    Huang, GB
    Sundararajan, N
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (01) : 29 - 38
  • [4] Classification of Drivers' Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals
    Cardone, Daniela
    Perpetuini, David
    Filippini, Chiara
    Mancini, Lorenza
    Nocco, Sergio
    Tritto, Michele
    Rinella, Sergio
    Giacobbe, Alberto
    Fallica, Giorgio
    Ricci, Fabrizio
    Gallina, Sabina
    Merla, Arcangelo
    [J]. SENSORS, 2022, 22 (19)
  • [5] A ROBUST FRAMEWORK FOR DRIVER FATIGUE DETECTION FROM EEG SIGNALS USING ENHANCEMENT OF MODIFIED Z-SCORE AND MULTIPLE MACHINE LEARNING ARCHITECTURES
    Abdubrani, Rafiuddin
    Mustafa, Mahfuzah
    Zahari, Zarith Liyana
    [J]. IIUM ENGINEERING JOURNAL, 2023, 24 (02): : 354 - 372
  • [6] Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods
    Toprak, Betul
    Brandt, Stephanie
    Brederecke, Jan
    Gianfagna, Francesco
    Vishram-Nielsen, Julie K. K.
    Ojeda, Francisco M.
    Costanzo, Simona
    Borschel, Christin S.
    Soderberg, Stefan
    Katsoularis, Ioannis
    Camen, Stephan
    Vartiainen, Erkki
    Donati, Maria Benedetta
    Kontto, Jukka
    Bobak, Martin
    Mathiesen, Ellisiv B.
    Linneberg, Allan
    Koenig, Wolfgang
    Lochen, Maja-Lisa
    Di Castelnuovo, Augusto
    Blankenberg, Stefan
    de Gaetano, Giovanni
    Kuulasmaa, Kari
    Salomaa, Veikko
    Iacoviello, Licia
    Niiranen, Teemu
    Zeller, Tanja
    Schnabel, Renate B.
    [J]. EUROPACE, 2023, 25 (03): : 812 - 819