Magnetoencephalography can reveal deep brain network activities linked to memory processes

被引:10
|
作者
Lopez-Madrona, Victor J. [1 ]
Villalon, Samuel Medina [1 ,2 ]
Badier, Jean-Michel [1 ]
Trebuchon, Agnes [2 ,3 ]
Jayabal, Velmurugan [1 ]
Bartolomei, Fabrice [1 ,2 ]
Carron, Romain [1 ,3 ]
Barborica, Andrei [4 ]
Vulliemoz, Serge [5 ]
Alario, F-Xavier [6 ]
Benar, Christian G. [1 ]
机构
[1] Aix Marseille Univ, Inst Neurosci Syst, INS, INSERM, F-13005 Marseille, France
[2] Timone Hosp, AP HM, Epileptol & Cerebral Rhythmol, Marseille, France
[3] Timone Hosp, AP HM, Funct & Stereotact Neurosurg, Marseille, France
[4] Univ Bucharest, Phys Dept, Bucharest, Romania
[5] Univ Hosp & Fac Med Geneva, EEG & Epilepsy Unit, Geneva, Switzerland
[6] Aix Marseille Univ, LPC, CNRS, Marseille, France
关键词
hippocampus; independent component analysis; MEG; memory; SEEG; simultaneous recordings; source localization; BLIND SOURCE SEPARATION; SIMULTANEOUS MEG; GAMMA OSCILLATIONS; HUMAN HIPPOCAMPUS; EEG; RECOGNITION; FACE; LOCALIZATION; RECORDINGS; SEEG;
D O I
10.1002/hbm.25987
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recording from deep neural structures such as hippocampus noninvasively and yet with high temporal resolution remains a major challenge for human neuroscience. Although it has been proposed that deep neuronal activity might be recordable during cognitive tasks using magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep structures to MEG recordings may be too small to be detected or might be eclipsed by the activity of large-scale neocortical networks. In the present study, we disentangled mesial activity and large-scale networks from the MEG signals thanks to blind source separation (BSS). We then validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a memory task involving the recognition of old and new images, we identified with BSS a putative mesial component, which was present in all patients and all control subjects. The time course of the component selectively correlated with stereo-electroencephalography signals recorded from hippocampus and rhinal cortex, thus confirming its mesial origin. This finding complements previous studies with epileptic activity and opens new possibilities for using MEG to study deep brain structures in cognition and in brain disorders.
引用
收藏
页码:4733 / 4749
页数:17
相关论文
共 35 条
  • [1] Deep brain activities can be detected with magnetoencephalography
    Francesca Pizzo
    N. Roehri
    S. Medina Villalon
    A. Trébuchon
    S. Chen
    S. Lagarde
    R. Carron
    M. Gavaret
    B. Giusiano
    A. McGonigal
    F. Bartolomei
    J. M. Badier
    C. G. Bénar
    [J]. Nature Communications, 10
  • [2] Deep brain activities can be detected with magnetoencephalography
    Pizzo, F.
    Roehri, N.
    Villalon, S. Medina
    Trebuchon, A.
    Chen, S.
    Lagarde, S.
    Carron, R.
    Gavaret, M.
    Giusiano, B.
    McGonigal, A.
    Bartolomei, F.
    Badier, M.
    Benar, C. G.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [3] Author Correction: Deep brain activities can be detected with magnetoencephalography
    Francesca Pizzo
    N. Roehri
    S. Medina Villalon
    A. Trébuchon
    S. Chen
    S. Lagarde
    R. Carron
    M. Gavaret
    B. Giusiano
    A. McGonigal
    F. Bartolomei
    J. M. Badier
    C. G. Bénar
    [J]. Nature Communications, 12
  • [4] Deep brain activities can be detected with magnetoencephalography (vol 10, 971, 2019)
    Pizzo, Francesca
    Roehri, N.
    Villalon, S. Medina
    Trebuchon, A.
    Chen, S.
    Lagarde, S.
    Carron, R.
    Gavaret, M.
    Giusiano, B.
    McGonigal, A.
    Bartolomei, F.
    Badier, J. M.
    Benar, C. G.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Changes in brain network activity during working memory tasks: A magnetoencephalography study
    Brookes, Matthew J.
    Wood, Jonathan R.
    Stevenson, Claire M.
    Zumer, Johanna M.
    White, Thomas P.
    Liddle, Peter F.
    Morris, Peter G.
    [J]. NEUROIMAGE, 2011, 55 (04) : 1804 - 1815
  • [6] A Deep Neural Network Classifier for Decoding Human Brain Activity Based on Magnetoencephalography
    Caliskan, Abdullah
    Yuksel, Mehmet Emin
    Badem, Hasan
    Basturk, Alper
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2017, 23 (02) : 63 - 67
  • [7] NEUROSCIENCE Can brain scans reveal concussion-linked disease?
    Underwood, Emily
    [J]. SCIENCE, 2016, 352 (6288) : 881 - 881
  • [8] Coordinating brain-distributed network activities in memory resistant to extinction
    Clarke-Williams, Charlie J.
    Lopes-dos-Santos, Vitor
    Lefevre, Laura
    Brizee, Demi
    Causse, Adrien A.
    Rothaermel, Roman
    Hartwich, Katja
    Perestenko, Pavel, V
    Toth, Robert
    Mcnamara, Colin G.
    Sharott, Andrew
    Dupret, David
    [J]. CELL, 2024, 187 (02) : 409 - 427.e19
  • [9] Neural Evidence of Superior Memory: How to Capture Brain Activities of Encoding Processes Underlying Superior Memory
    Yoon, Jong-Sung
    Harper, Jeremy
    Boot, Walter R.
    Gong, Yanfei
    Bernat, Edward M.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2019, 13
  • [10] Complex network measures reveal optimal targets for deep brain stimulation and identify clusters of collective brain dynamics
    Spiliotis, Konstantinos
    Butenko, Konstantin
    van Rienen, Ursula
    Starke, Jens
    Kohling, Rudiger
    [J]. FRONTIERS IN PHYSICS, 2022, 10