Lines of Fisher's zeros as separatrices for complex renormalization group flows

被引:8
|
作者
Liu, Yuzhi [1 ]
Meurice, Y. [1 ]
机构
[1] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 09期
关键词
PHASE-TRANSITION; CONFINEMENT; STRENGTH; DYNAMICS; SPIN;
D O I
10.1103/PhysRevD.83.096008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We extend the renormalization group transformation based on the two-lattice matching to the complex inverse temperature plane for Dyson's hierarchical Ising model. We consider values of the dimensional parameter above, below, and exactly at the critical value where the ordered low temperature phase becomes impossible for a real positive temperature. We show numerically that, as the volume increases, the Fisher's zeros appear to accumulate along lines that separate the flows ending on different fixed points. We justify these findings in terms of finite size scaling. We argue that the location of the Fisher's zeros at large volume determine the phase diagram in the complex plane. We discuss the implications for nontrivial infrared fixed points in lattice gauge theory.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Fisher's Zeros as the Boundary of Renormalization Group Flows in Complex Coupling Spaces
    Denbleyker, A.
    Du, Daping
    Liu, Yuzhi
    Meurice, Y.
    Zou, Haiyuan
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [2] Topological defect lines and renormalization group flows in two dimensions
    Chi-Ming Chang
    Ying-Hsuan Lin
    Shu-Heng Shao
    Yifan Wang
    Xi Yin
    [J]. Journal of High Energy Physics, 2019
  • [3] Topological defect lines and renormalization group flows in two dimensions
    Chang, Chi-Ming
    Lin, Ying-Hsuan
    Shao, Shu-Heng
    Wang, Yifan
    Yin, Xi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [4] The Riemann zeros and the cyclic renormalization group
    Sierra, G
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 185 - 213
  • [5] Renormalization group flows and anomalies
    Komargodski, Zohar
    [J]. THEORETICAL PHYSICS TO FACE THE CHALLENGE OF LHC, 2015, : 255 - 271
  • [6] Supersymmetric renormalization group flows
    Mastaler, M.
    Synatschke-Czerwonka, F.
    Wipf, A.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2012, 43 (05) : 593 - 599
  • [7] Optimized renormalization group flows
    Litim, DF
    [J]. PHYSICAL REVIEW D, 2001, 64 (10) : 17
  • [8] Holographic Renormalization Group Flows
    Aref 'eva, I. Ya.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 200 (03) : 1313 - 1323
  • [9] Holographic Renormalization Group Flows
    I. Ya. Aref’eva
    [J]. Theoretical and Mathematical Physics, 2019, 200 : 1313 - 1323
  • [10] Singularities of renormalization group flows
    Streets, Jeffrey
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (01) : 8 - 16