THE CANONICAL EIGHT-FORM ON MANIFOLDS WITH HOLONOMY GROUP SPIN(9)

被引:7
|
作者
Castrillon Lopez, M. [1 ]
Gadea, P. M. [2 ]
Mykytyuk, I. V. [3 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Geometria & Topol, ICMAT CSIC UAM UCM UC3M, E-28040 Madrid, Spain
[2] CSIC, Inst Fis Fundamental, E-28006 Madrid, Spain
[3] Inst Appl Problems Mech & Math, UA-79060 Lvov, Ukraine
关键词
Canonical 8-form on a Spin(9)-manifold; curvature tensor of the Cayley planes; basic spin representation of Spin(9); PROJECTIVE PLANE; CAYLEY OCTAVES; BUNDLES; SPACES;
D O I
10.1142/S0219887810004786
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An explicit expression of the canonical 8-form on a Riemannian manifold with a Spin(9)structure, in terms of the nine local symmetric involutions involved, is given. The list of explicit expressions of all the canonical forms related to Berger's list of holonomy groups is thus completed. Moreover, some results on Spin(9)-structures as G-structures defined by a tensor and on the curvature tensor of the Cayley planes, are obtained.
引用
收藏
页码:1159 / 1183
页数:25
相关论文
共 50 条
  • [1] SPECTRUM OF THE LAPLACIAN ON MANIFOLDS WITH SPIN(9) HOLONOMY
    Lam, Kwan-Hang
    [J]. MATHEMATICAL RESEARCH LETTERS, 2008, 15 (5-6) : 1167 - 1186
  • [2] On the explicit expressions of the canonical 8-form on Riemannian manifolds with holonomy
    Castrillon Lopez, M.
    Gadea, P. M.
    Mykytyuk, I. V.
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (01): : 17 - 22
  • [3] Spin Holonomy of Einstein Manifolds
    Brett McInnes
    [J]. Communications in Mathematical Physics, 1999, 203 : 349 - 364
  • [4] Spin holonomy of Einstein manifolds
    McInnes, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) : 349 - 364
  • [5] A simpler eight-form easy Tai Chi for elderly adults
    Li, FZ
    Fisher, KJ
    Harmer, P
    Shirai, M
    [J]. JOURNAL OF AGING AND PHYSICAL ACTIVITY, 2003, 11 (02) : 206 - 218
  • [6] Octonion-Valued Forms and the Canonical 8-Form on Riemannian Manifolds with a Spin(9)-Structure
    Jan Kotrbatý
    [J]. The Journal of Geometric Analysis, 2020, 30 : 3616 - 3640
  • [7] Octonion-Valued Forms and the Canonical 8-Form on Riemannian Manifolds with a Spin(9)-Structure
    Kotrbaty, Jan
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (04) : 3616 - 3640
  • [8] On the full holonomy group of Lorentzian manifolds
    Baum, Helga
    Laerz, Kordian
    Leistner, Thomas
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 797 - 828
  • [9] On the full holonomy group of Lorentzian manifolds
    Helga Baum
    Kordian Lärz
    Thomas Leistner
    [J]. Mathematische Zeitschrift, 2014, 277 : 797 - 828
  • [10] On the Elliptic Genera of Manifolds of Spin(7) Holonomy
    Benjamin, Nathan
    Harrison, Sarah M.
    Kachru, Shamit
    Paquette, Natalie M.
    Whalen, Daniel
    [J]. ANNALES HENRI POINCARE, 2016, 17 (10): : 2663 - 2697