A Discriminative Latent Model of Object Classes and Attributes

被引:0
|
作者
Wang, Yang [1 ]
Mori, Greg [1 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a discriminatively trained model for joint modelling of object class labels (e.g. "person", "dog", "chair", etc.) and their visual attributes (e.g. "has head", "furry", "metal", etc.). We treat attributes of an object as latent variables in our model and capture the correlations among attributes using an undirected graphical model built from training data. The advantage of our model is that it allows us to infer object class labels using the information of both the test; image itself and its (latent) attributes. Our model unifies object class prediction and attribute prediction in a principled framework. It is also flexible enough to deal with different performance measurements. Our experimental results provide quantitative evidence that attributes can improve object naming.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 50 条
  • [1] A discriminative framework for modelling object classes
    Holub, A
    Perona, P
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 664 - 671
  • [2] Joint classification of actions and object state changes with a latent variable discriminative model
    Vafeias, Efstathios
    Ramamoorthy, Subramanian
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 4856 - 4862
  • [3] A Latent Model of Discriminative Aspect
    Farhadi, Ali
    Tabrizi, Mostafa Kamali
    Endres, Ian
    Forsyth, David
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 948 - 955
  • [4] Learning Discriminative Latent Attributes for Zero-Shot Classification
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Yang, Yi
    Chen, Xilin
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4233 - 4242
  • [5] Generative regularization with latent topics for discriminative object recognition
    Rubio, Jose C.
    Eigenstetter, Angela
    Ommer, Bjoern
    PATTERN RECOGNITION, 2015, 48 (12) : 3871 - 3880
  • [6] THE MODEL OF LATENT CLASSES
    BOUDON, R
    REVUE FRANCAISE DE SOCIOLOGIE, 1962, 3 (03): : 259 - 289
  • [7] A Discriminative Latent Variable Model for Online Clustering
    Samdani, Rajhans
    Chang, Kai-Wei
    Roth, Dan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [8] Discriminative Latent Visual Space For Zero-Shot Object Classification
    Roy, Abhinaba
    Banerjee, Biplab
    Murino, Vittorio
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2552 - 2557
  • [9] Joint learning of visual attributes, object classes and visual saliency
    Wang, Gang
    Forsyth, David
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 537 - 544
  • [10] Investigating Attributes that Characterize Important Classes in Object Oriented Systems
    Sora, Ioana
    Cernazanu-Glavan, Cosmin
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 461 - 466