Entropy-based variational Bayes learning framework for data clustering<?show [AQ ID=Q1]?>

被引:11
|
作者
Fan, Wentao [1 ]
Bouguila, Nizar [2 ]
Bourouis, Sami [3 ,4 ]
Laalaoui, Yacine [5 ]
机构
[1] Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Peoples R China
[2] Concordia Univ, CIISE, Montreal, PQ, Canada
[3] Taif Univ, Coll Comp & Informat Technol, Dept Informat Technol, At Taif, Saudi Arabia
[4] Tunis El Manar Univ, Signal Image & Technol Informat LR SITI ENIT, Tunis, Tunisia
[5] Taif Univ, Coll Comp & Informat Technol, Dept Informat Technol, At Taif, Saudi Arabia
基金
中国国家自然科学基金;
关键词
pattern clustering; variational techniques; learning (artificial intelligence); Bayes methods; gesture recognition; entropy; variational Bayes learning framework; clustering; proportional data; Beta-Liouville mixture model; incremental model selection; theoretical maximum entropy; estimated entropy; MeanNN estimator; synthetic data sets; human gesture recognition; vehicle tracking; traffic monitoring; DIRICHLET MIXTURE-MODELS; GESTURE RECOGNITION;
D O I
10.1049/iet-ipr.2018.0043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel framework is developed for the modelling and clustering of proportional data (i.e. normalised histograms) based on the Beta-Liouville mixture model. This framework is based on incremental model selection, by testing if a given component was truly Beta-Liouville distributed. Specifically, the authors compare the theoretical maximum entropy of the given component with the estimated entropy obtained by the MeanNN estimator. If a significant difference was gained from this comparison, this component is considered as not well fitted and is then splitted into two new components with a proper initialisation. Our approach is tested through synthetic data sets and real-world applications which involve human gesture recognition and vehicle tracking for traffic monitoring purposes, which demonstrate that the authors' approach is superior to comparable techniques.
引用
收藏
页码:1762 / 1772
页数:11
相关论文
共 40 条
  • [1] ANN-based grid voltage <?show [AQ ID=Q1]?>and frequency forecaster
    Pavan, Alessandro Massi
    Chettibi, Nadjwa
    Mellit, Adel
    Feehally, Thomas
    Forsyth, Andrew J.
    Todd, Rebecca
    [J]. JOURNAL OF ENGINEERING-JOE, 2019, (17): : 3687 - 3691
  • [2] Optimisation-based procedure for characterising switched reluctance motors<?show [AQ ID=Q1]?>
    Jiang, James W.
    Peng, Fei
    Bilgin, Berker
    Emadi, Ali
    [J]. IET ELECTRIC POWER APPLICATIONS, 2017, 11 (08) : 1366 - 1375
  • [3] Location reconstructions of<?show [AQ ID=Q1]?> attributed SCs by monopulse radar
    Guo, Kun-Yi
    Niu, Tong-Yao
    Sheng, Xin-Qing
    [J]. IET RADAR SONAR AND NAVIGATION, 2018, 12 (09): : 1005 - 1011
  • [4] Fast pore matching method<?show [AQ ID=Q1]?> based on deterministic annealing algorithm
    Lu, Guangming
    Xu, Yuanrong
    [J]. IET IMAGE PROCESSING, 2017, 11 (11) : 1034 - 1040
  • [5] Generator governing system based on grey prediction and extension control<?show [AQ ID=Q1]?>
    Wang, Mingdong
    Wang, Xueke
    Su, Xiangjing
    Li, Xiangyang
    Yang, Yihang
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2017, 11 (15) : 3776 - 3782
  • [6] Resiliency oriented integration of DSRs<?show [AQ ID=Q1]?> in transmission networks
    Soroudi, Alireza
    Maghouli, Pouria
    Keane, Andrew
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2017, 11 (08) : 2013 - 2022
  • [7] Entropy-Based Incremental Variational Bayes Learning of Gaussian Mixtures
    Penalver, Antonio
    Escolano, Francisco
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) : 534 - 540
  • [8] Proportional data modeling via entropy-based variational bayes learning of mixture models
    Fan, Wentao
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    Du, Jixiang
    [J]. APPLIED INTELLIGENCE, 2017, 47 (02) : 473 - 487
  • [9] Proportional data modeling via entropy-based variational bayes learning of mixture models
    Wentao Fan
    Faisal R. Al-Osaimi
    Nizar Bouguila
    Jixiang Du
    [J]. Applied Intelligence, 2017, 47 : 473 - 487
  • [10] Experiment-based supervised learning approach toward condition monitoring of PV array mismatch<?show [AQ ID=Q1]?>
    Liu, Guangyu
    Yu, Weijie
    Zhu, Ling
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (07) : 1014 - 1024