The Hartley transform in a finite field

被引:0
|
作者
de Souza, RMC [1 ]
de Oliveira, HM [1 ]
Kauffman, AN [1 ]
机构
[1] UFPE, CTG, Dept Eletr & Sistemas, CODEC,Grp Pesquisas Comunicacoes, BR-50711970 Recife, PE, Brazil
关键词
D O I
10.1109/ITS.1998.713126
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, the k-trigonometric functions over the Galois Field GF(q) are introduced and their main properties derived. This leads to the definition of the cas(k)(.) function over GF(q), which in turn leads to a finite field Hartley Transform. The main properties of this new discrete transform ave presented and areas for possible applications are mentioned.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 50 条
  • [1] Trigonometry in finite fields and a new Hartley Transform
    de Souza, RMC
    de Oliveira, HM
    Kauffman, AN
    Paschoal, AJA
    [J]. 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 293 - 293
  • [2] HARTLEY SERIES AND NOTCH HARTLEY TRANSFORM
    LIU, JC
    LIN, TP
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 1990, 69 (05) : 613 - 620
  • [3] THE FAST HARTLEY TRANSFORM
    BRACEWELL, RN
    [J]. PROCEEDINGS OF THE IEEE, 1984, 72 (08) : 1010 - 1018
  • [4] Computing with the Hartley transform
    Bracewell, Ronald N.
    [J]. Computers in Physics, 1995, 9 (04):
  • [5] The generalized Hartley transform
    Bouzeffour, Fethi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (03) : 230 - 239
  • [6] DISCRETE HARTLEY TRANSFORM
    BRACEWELL, RN
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1983, 73 (12) : 1832 - 1835
  • [7] VECTOR HARTLEY TRANSFORM
    VILLASENOR, JD
    BRACEWELL, RN
    [J]. ELECTRONICS LETTERS, 1989, 25 (17) : 1110 - 1111
  • [8] ASSESSING THE HARTLEY TRANSFORM
    BRACEWELL, RN
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (12): : 2174 - 2176
  • [9] FAST HARTLEY TRANSFORM
    KUUTTILA, L
    [J]. DR DOBBS JOURNAL, 1985, 10 (05): : 12 - 12
  • [10] Modified Hartley transform
    [J]. Radioelectronics and Communications Systems, 40 (01):