Partially Supervised Detection in Hyperspectral Imagery

被引:0
|
作者
Heinz, Daniel C. [1 ]
Bahr, Thomas [2 ]
Streutker, David [1 ]
Terrie, Greg [1 ]
Ingram, Michael [1 ]
机构
[1] Harris Geospatial Solut Inc, Herndon, VA 20170 USA
[2] Harris Geospatial Solut GmbH, D-82205 Gilching, Germany
关键词
UnConstrained Abundance (UCA); Nonnegatively Constrained Abundance (NCA); Fully Constrained Abundance (FCA); Constrained Energy Minimization (CEM); Matched Filter (MF); Mixture Tuned Matched Filter (MTMF); Adaptive Cosine/Coherence Estimator (ACE); Spectral Angle Mapper (SAM); SpecTIR Hyperspectral Airborne Experiment (SHARE) 2012;
D O I
10.1117/12.2616301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, performance of state-of-the-art partially supervised detection algorithms are compared. It can be difficult to characterize the performance of detection algorithms using field data, especially at the subpixel level, due to limited ground truth. Fortunately, the SpecTIR Hyperspectral Airborne Experiment (SHARE) 2012 contains multiple sets of targets for testing detection algorithms with excellent ground truth. In this paper we utilize field spectra acquired for six targets to evaluate the performance of multiple detection algorithms. Each method is initialized with a single field spectra target signature, and detection performance of each method is separately assessed for each of the six targets. Detailed evaluation of these detection methods on the SHARE 2012 hyperspectral data is provided.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Topological Learning for Semi-Supervised Anomaly Detection in Hyperspectral Imagery
    Ramirez, Juan, Jr.
    Armitage, Tristan
    Bihl, Trevor
    Kramer, Ryan
    [J]. PROCEEDINGS OF THE 2019 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2019, : 560 - 564
  • [2] Partially supervised detection using band subset selection in hyperspectral data
    Jimenez, LO
    Velez, M
    Chaar, Y
    Fontan, F
    Santiago, C
    Hernandez, R
    [J]. ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY V, 1999, 3717 : 148 - 156
  • [3] Supervised detection for hyperspectral imagery based on high-dimensional multiscale autoregression
    He, Lin
    Pan, Quan
    Di, Wei
    Li, Yuan-Qing
    [J]. Zidonghua Xuebao/ Acta Automatica Sinica, 2009, 35 (05): : 509 - 518
  • [4] Detection in hyperspectral imagery
    Schweizer, SM
    Moura, JMF
    [J]. ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY IV, 1998, 3372 : 188 - 198
  • [5] Anomaly detection in hyperspectral imagery
    Chang, CI
    Chiang, SS
    Ginsberg, IW
    [J]. GEO-SPATIAL IMAGE AND DATA EXPLOITATION II, 2001, 4383 : 43 - 50
  • [6] Modeling and detection in hyperspectral imagery
    Schweizer, SM
    Moura, JMF
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2273 - 2276
  • [7] Change detection for hyperspectral imagery
    Vongsy, Karmon
    Karimkhan, Shamsaddin
    Shaw, Arnab K.
    Wicker, Devert
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565
  • [8] Partially supervised oil-slick detection by SAR imagery using kernel expansion
    Mercier, Gregoire
    Girard-Ardhuin, Fanny
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10): : 2839 - 2846
  • [9] Efficient detection in hyperspectral imagery
    Schweizer, SM
    Moura, JMF
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (04) : 584 - 597
  • [10] Supervised Classification of Snow Cover using Hyperspectral Imagery
    Varade, Divyesh
    Maurya, Ajay K.
    Sure, Anudeep
    Dikshit, Onkar
    [J]. 2017 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING AND COMMUNICATION TECHNOLOGIES (ICETCCT), 2017, : 55 - 61