Mutual information in a dilute, asymmetric neural network model

被引:14
|
作者
Greenfeld, E [1 ]
Lecar, H
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 04期
关键词
D O I
10.1103/PhysRevE.63.041905
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Neural networks with asymmetric synaptic connections (w(ij)not equalw(jt)) display a broad range of dynamical behavior including fixed point, periodic, and "chaotic" trajectories. Previous work has shown that such networks undergo an order-chaos phase transition as various network parameters, such as the connectivity or the degree of asymmetry, an changed. Here, using an information theoretic approach, we present results which suggest that neurons are able to communicate information to each other most effectively in networks that are near the order-chaos transition. We then extend the model to incorporate some biologically relevant features.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mutual information amyl topology 1:: Asymmetric neural network
    Dominguez, D
    Koroutchev, K
    Serrano, E
    Rodríguez, FB
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 14 - 19
  • [2] Mutual Information-Based Neural Network Distillation for Improving Photonic Neural Network Training
    Alexandros Chariton
    Nikolaos Passalis
    Nikos Pleros
    Anastasios Tefas
    [J]. Neural Processing Letters, 2023, 55 : 8589 - 8604
  • [3] Mutual Information-Based Neural Network Distillation for Improving Photonic Neural Network Training
    Chariton, Alexandros
    Passalis, Nikolaos
    Pleros, Nikos
    Tefas, Anastasios
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (07) : 8589 - 8604
  • [4] Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings
    Perez-Ramirez, Carlos A.
    Amezquita-Sanchez, Juan P.
    Valtierra-Rodriguez, Martin
    Adeli, Hojjat
    Dominguez-Gonzalez, Aurelio
    Romero-Troncoso, Rene J.
    [J]. ENGINEERING STRUCTURES, 2019, 178 : 603 - 615
  • [5] Estimating quantum mutual information through a quantum neural network
    Shin, Myeongjin
    Lee, Junseo
    Jeong, Kabgyun
    [J]. QUANTUM INFORMATION PROCESSING, 2024, 23 (02)
  • [6] Estimating quantum mutual information through a quantum neural network
    Myeongjin Shin
    Junseo Lee
    Kabgyun Jeong
    [J]. Quantum Information Processing, 23
  • [7] Mutual Information of Neural Network Initialisations: Mean Field Approximations
    Tanner, Jared
    Ughi, Giuseppe
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 813 - 818
  • [8] ON NETWORK SCIENCE AND MUTUAL INFORMATION FOR EXPLAINING DEEP NEURAL NETWORKS
    Davis, Brian
    Bhatt, Umang
    Bhardwaj, Kartikeya
    Marculescu, Radu
    Moura, Jose M. P.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8399 - 8403
  • [9] A complex network model for seismicity based on mutual information
    Jimenez, Abigail
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (10) : 2498 - 2506
  • [10] AN EXACTLY SOLVABLE ASYMMETRIC NEURAL NETWORK MODEL
    DERRIDA, B
    GARDNER, E
    ZIPPELIUS, A
    [J]. EUROPHYSICS LETTERS, 1987, 4 (02): : 167 - 173