On Miquel's theorem and inversions in normed planes

被引:5
|
作者
Spirova, Margarita [1 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 161卷 / 03期
关键词
Finite-dimensional Banach spaces; Inversion; Minkowski planes; Miquel's theorem; Mobius plane; Normed planes; LINEAR-SPACES; ZUR THEORIE; MOBIUSEBENEN; GEOMETRY;
D O I
10.1007/s00605-009-0153-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asplund and Grunbaum proved that Miquel's six-circles theorem holds in strictly convex, smooth normed planes if the considered circles have equal radii. We extend this result in two directions. First we prove that Miquel's theorem for circles of equal radii (more precisely, a generalized version of it) is true in every normed plane, without the assumptions of strict convexity and smoothness, and give also some properties of the circle configuration related to this theorem. Second we clarify the situation if the circles of the corresponding configuration do not necessarily have equal radii.
引用
收藏
页码:335 / 345
页数:11
相关论文
共 50 条