Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity

被引:530
|
作者
Parton, Laura E.
Ye, Chian Ping
Coppari, Roberto
Enriori, Pablo J.
Choi, Brian
Zhang, Chen-Yu
Xu, Chun
Vianna, Claudia R.
Balthasar, Nina
Lee, Charlotte E.
Elmquist, Joel K.
Cowley, Michael A.
Lowell, Bradford B.
机构
[1] Oregon Hlth & Sci Univ, Div Neurosci, Oregon Natl Primate Res Ctr, Beaverton, OR 97006 USA
[2] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210093, Peoples R China
[3] Harvard Univ, Sch Med, Boston, MA 02215 USA
[4] Beth Israel Deaconess Med Ctr, Dept Med, Div Endocrinol, Boston, MA 02215 USA
[5] Univ Texas, SW Med Ctr, Dept Internal Med, Ctr Hypothalam Res, Dallas, TX 75390 USA
关键词
D O I
10.1038/nature06098
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A subset of neurons in the brain, known as 'glucose-excited' neurons, depolarize and increase their firing rate in response to increases in extracellular glucose. Similar to insulin secretion by pancreatic beta-cells(1), glucose excitation of neurons is driven by ATP-mediated closure of ATP-sensitive potassium (K-ATP) channels(2-5). Although beta-cell-like glucose sensing in neurons is well established, its physiological relevance and contribution to disease states such as type 2 diabetes remain unknown. To address these issues, we disrupted glucose sensing in glucose-excited pro-opiomelanocortin (POMC) neurons(5) via transgenic expression of a mutant Kir6.2 subunit (encoded by the Kcnj11 gene) that prevents ATP-mediated closure of K-ATP channels(6,7). Here we show that this genetic manipulation impaired the whole-body response to a systemic glucose load, demonstrating a role for glucose sensing by POMC neurons in the overall physiological control of blood glucose. We also found that glucose sensing by POMC neurons became defective in obese mice on a high-fat diet, suggesting that loss of glucose sensing by neurons has a role in the development of type 2 diabetes. The mechanism for obesity-induced loss of glucose sensing in POMC neurons involves uncoupling protein 2 (UCP2), a mitochondrial protein that impairs glucose-stimulated ATP production(8). UCP2 negatively regulates glucose sensing in POMC neurons. We found that genetic deletion of Ucp2 prevents obesity-induced loss of glucose sensing, and that acute pharmacological inhibition of UCP2 reverses loss of glucose sensing. We conclude that obesity-induced, UCP2-mediated loss of glucose sensing in glucose-excited neurons might have a pathogenic role in the development of type 2 diabetes.
引用
收藏
页码:228 / U7
页数:6
相关论文
共 50 条
  • [1] Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity
    Laura E. Parton
    Chian Ping Ye
    Roberto Coppari
    Pablo J. Enriori
    Brian Choi
    Chen-Yu Zhang
    Chun Xu
    Claudia R. Vianna
    Nina Balthasar
    Charlotte E. Lee
    Joel K. Elmquist
    Michael A. Cowley
    Bradford B. Lowell
    Nature, 2007, 449 : 228 - 232
  • [2] Glutamatergic Input to POMC Neurons Regulates Glucose Homeostasis
    Liu, Tiemin
    Berglund, Eric D.
    Williams, Kevin W.
    Liu, Chen
    Deng, Zhuo
    Liu, Tianya
    Lee, Syann
    Lee, Charlotte E.
    Elmquist, Joel K.
    DIABETES, 2014, 63 : A63 - A63
  • [3] Glucose-sensing by POMC neurons is impaired in obesity and is regulated by UCP2
    Parton, Laura E.
    Ye, Chianping
    Coppari, Roberto
    Enriori, Pablo J.
    Choi, Brian
    Zhang, Chen-Yu
    Xu, Chun
    Vianna, Claudia R.
    Lee, Charlotte E.
    Elmquist, Joel K.
    Cowley, Michael A.
    Lowell, Bradford B.
    DIABETES, 2007, 56 : A7 - A8
  • [4] TAp63 in Mature POMC Neurons Regulates Glucose and Energy Homeostasis
    Wang, Chunmei
    He, Yanlin
    Xu, Pingwen
    Yang, Yongjie
    Xu, Yong
    DIABETES, 2018, 67
  • [5] AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons
    Claret, Marc
    Smith, Mark A.
    Batterham, Rachel L.
    Selman, Colin
    Choudhury, Agharul I.
    Fryer, Lee G. D.
    Clements, Melanie
    Al-Qassab, Hind
    Heffron, Helen
    Xu, Allison W.
    Speakman, John R.
    Barsh, Gregory S.
    Viollet, Benoit
    Vaulont, Sophie
    Ashford, Michael L. J.
    Carling, David
    Withers, Dominic J.
    JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (08): : 2325 - 2336
  • [6] Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice
    Berglund, Eric D.
    Vianna, Claudia R.
    Donato, Jose, Jr.
    Kim, Mi Hwa
    Chuang, Jen-Chieh
    Lee, Charlotte E.
    Lauzon, Danielle A.
    Lin, Peagan
    Brule, Laura J.
    Scott, Michael M.
    Coppari, Roberto
    Elmquist, Joel K.
    JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (03): : 1000 - 1009
  • [7] Bardet-biedl Syndrome 3 Gene In Pomc Neurons Regulates Glucose Homeostasis And Baroreflex Sensitivity
    Guo, Deng-Fu
    Morgan, Donald A.
    Williams, Paul
    Zhao, Yuying
    Shaban, Mohamed
    Zhang, Qihong
    Sheffield, Val
    Rahmouni, Kamal
    HYPERTENSION, 2021, 78
  • [8] Conditional Disruption of the BBSome in POMC Neurons Alter Energy and Glucose Homeostasis
    Guo, Deng F.
    Williams, Paul A.
    Rahmouni, Kamal
    FASEB JOURNAL, 2022, 36
  • [9] Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis
    Tarussio, David
    Metref, Salima
    Seyer, Pascal
    Mounien, Lourdes
    Vallois, David
    Magnan, Christophe
    Foretz, Marc
    Thorens, Bernard
    JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (01): : 413 - 424
  • [10] Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity
    Timper, Katharina
    Paeger, Lars
    Sanchez-Lasheras, Carmen
    Varela, Luis
    Jais, Alexander
    Nolte, Hendrik
    Vogt, Merly C.
    Hausen, A. Christine
    Heilinger, Christian
    Evers, Nadine
    Pospisilik, J. Andrew
    Penninger, Josef M.
    Taylor, Eric B.
    Horvath, Tamas L.
    Kloppenburg, Peter
    Bruening, Jens Claus
    CELL REPORTS, 2018, 25 (02): : 383 - +