Analysis of Temporal Coherence in Videos for Action Recognition

被引:0
|
作者
Saleh, Adel [1 ]
Abdel-Nasser, Mohamed [1 ]
Akram, Farhan [1 ]
Garcia, Miguel Angel [2 ]
Puig, Domenec [1 ]
机构
[1] Univ Rovira & Virgili, Dept Comp Engn & Math, Tarragona, Spain
[2] Autonomous Univ Madrid, Dept Elect & Commun Technol, Madrid, Spain
关键词
D O I
10.1007/978-3-319-41501-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an approach to improve the performance of activity recognition methods by analyzing the coherence of the frames in the input videos and then modeling the evolution of the coherent frames, which constitute a sub-sequence, to learn a representation for the videos. The proposed method consist of three steps: coherence analysis, representation leaning and classification. Using two state-of-the-art datasets (Hollywood2 and HMDB51), we demonstrate that learning the evolution of subsequences in lieu of frames, improves the recognition results and makes actions classification faster.
引用
收藏
页码:325 / 332
页数:8
相关论文
共 50 条
  • [1] Action Recognition in Videos with Temporal Segments Fusions
    Fang, Yuanye
    Zhang, Rui
    Wang, Qiu-Feng
    Huang, Kaizhu
    [J]. ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, 2020, 11691 : 244 - 253
  • [2] Temporal Segment Networks for Action Recognition in Videos
    Wang, Limin
    Xiong, Yuanjun
    Wang, Zhe
    Qiao, Yu
    Lin, Dahua
    Tang, Xiaoou
    Van Gool, Luc
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (11) : 2740 - 2755
  • [3] Spatial-temporal pooling for action recognition in videos
    Wang, Jiaming
    Shao, Zhenfeng
    Huang, Xiao
    Lu, Tao
    Zhang, Ruiqian
    Lv, Xianwei
    [J]. NEUROCOMPUTING, 2021, 451 : 265 - 278
  • [4] A temporal belief filter improving human action recognition in videos
    Ramasso, Emmanuel
    Rombaut, Michele
    Pellerin, Denis
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1389 - 1392
  • [5] Multi-Temporal Convolutions for Human Action Recognition in Videos
    Stergiou, Alexandros
    Poppe, Ronald
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Action Recognition in Videos
    Wolf, Christian
    Baskurt, Atilla
    [J]. 2012 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS, 2012, : 3 - 4
  • [7] Spatio-Temporal VLAD Encoding for Human Action Recognition in Videos
    Duta, Ionut C.
    Ionescu, Bogdan
    Aizawa, Kiyoharu
    Sebe, Nicu
    [J]. MULTIMEDIA MODELING (MMM 2017), PT I, 2017, 10132 : 365 - 378
  • [8] Hierarchy Spatial-Temporal Transformer for Action Recognition in Short Videos
    Cai, Guoyong
    Cai, Yumeng
    [J]. FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 760 - 774
  • [9] Recurrent Spatial-Temporal Attention Network for Action Recognition in Videos
    Du, Wenbin
    Wang, Yali
    Qiao, Yu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1347 - 1360
  • [10] Unified Spatio-Temporal Attention Networks for Action Recognition in Videos
    Li, Dong
    Yao, Ting
    Duan, Ling-Yu
    Mei, Tao
    Rui, Yong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (02) : 416 - 428