Random Propagation of a Crack in a Thin-Walled Beam

被引:4
|
作者
Kunaporn, Chalitphan [1 ]
Singh, Mahendra P. [1 ]
Patil, Mayuresh J. [2 ]
Kapania, Rakesh K. [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Engn Mech, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA
来源
JOURNAL OF AIRCRAFT | 2011年 / 48卷 / 06期
关键词
ELEMENT;
D O I
10.2514/1.C031424
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Probabilistic methodology is used for estimating the growth of an existing crack in a thin-walled beam with a closed cross section. The beam is subjected to stochastic loads. The initial length of the crack is considered to be an uncertain quantity represented by a random variable. The random characteristics of the stress response, needed for crack growth analysis, are obtained by random vibration analysis of the thin-walled beam. The crack growth rate equation is solved for a large number of randomly generated sample values of the random parameters. The simulated crack growth results are then used to calculate the probability of failure. The failure is defined as occurring when the actual crack size exceeds the critical crack size. For demonstration of the methodology, the numerical results for the time-dependent probability of failure are obtained for an example problem of a thin-walled beam.
引用
收藏
页码:2002 / 2011
页数:10
相关论文
共 50 条
  • [1] Analysis of Thin-Walled Beam with Crack of Random Location and Size
    Kunaporn, Chalitphan
    Singh, Mahendra P.
    Patil, Mayuresh J.
    Kapania, Rakesh K.
    AIAA JOURNAL, 2012, 50 (06) : 1265 - 1280
  • [2] Dynamic crack propagation in elastoplastic thin-walled structures: Modelling and validation
    Mostofizadeh, S.
    Fagerstrom, M.
    Larsson, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (02) : 63 - 86
  • [3] Damage and strain localisation during crack propagation in thin-walled shells
    Baaser, H
    Gross, D
    JOURNAL DE PHYSIQUE IV, 1998, 8 (P8): : 13 - 17
  • [4] CRACK PROPAGATION IN RECTANGULAR THIN-WALLED PLATES WITH CONCENTRATORS SUBECTED TO CYCLING LOADING
    Kopecki, H.
    Zacharzewski, J.
    AVIATION, 2005, 9 (03) : 23 - 28
  • [5] NONLINEAR THIN-WALLED BEAM THEORY
    GHOBARAH, AA
    TSO, WK
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1971, 13 (12) : 1025 - &
  • [6] EFFECTIVE RIGIDITY OF THIN-WALLED BEAM
    PAVLOV, VA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1978, (04): : 151 - 155
  • [7] Modeling of crack propagation in thin-walled structures using a cohesive model for shell elements
    Zavattieri, Pablo D.
    Journal of Applied Mechanics, Transactions ASME, 2006, 73 (06): : 948 - 958
  • [8] Modeling of crack propagation in thin-walled structures using a cohesive model for shell elements
    Zavattieri, Pablo D.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2006, 73 (06): : 948 - 958
  • [9] Crack propagation analysis of welded thin-walled joints using boundary element method
    Mashiri, FR
    Zhao, XL
    Grundy, P
    COMPUTATIONAL MECHANICS, 2000, 26 (02) : 157 - 165
  • [10] Matrix crack detection in thin-walled composite beam using genetic fuzzy system
    Pawar, PM
    Ganguli, R
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (05) : 395 - 409