Probabilistic models for topic detection and tracking

被引:2
|
作者
Walls, F [1 ]
Jin, H [1 ]
Sista, S [1 ]
Schwartz, R [1 ]
机构
[1] BBN Technol, GTE, Cambridge, MA 02138 USA
关键词
D O I
10.1109/ICASSP.1999.758177
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present probabilistic models for use in detecting and tracking topics in broadcast news stories. Our information retrieval (IR) models are formally explained. The Topic Detection and Tracking (TDT) initiative is discussed. The application of probabilistic models to the topic detection and tracking tasks is developed, and enhancements are discussed. We discuss four variations of these models, and we report our preliminary test results from the current TDT corpus.
引用
收藏
页码:521 / 524
页数:4
相关论文
共 50 条
  • [1] Probabilistic models for topic detection and tracking
    GTE/BBN Technologies, Cambridge, MA, United States
    [J]. ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, (521-524):
  • [2] Probabilistic Topic Models
    Blei, David
    Carin, Lawrence
    Dunson, David
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (06) : 55 - 65
  • [3] Probabilistic Topic Models
    Blei, David M.
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (04) : 77 - 84
  • [4] Keep It Simple with Time: A Reexamination of Probabilistic Topic Detection Models
    He, Qi
    Chang, Kuiyu
    Lim, Ee-Peng
    Banerjee, Arindam
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) : 1795 - 1808
  • [5] Incorporating Probabilistic Knowledge into Topic Models
    Yao, Liang
    Zhang, Yin
    Wei, Baogang
    Qian, Hongze
    Wang, Yibing
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART II, 2015, 9078 : 586 - 597
  • [6] Probabilistic topic models for sequence data
    Nicola Barbieri
    Giuseppe Manco
    Ettore Ritacco
    Marco Carnuccio
    Antonio Bevacqua
    [J]. Machine Learning, 2013, 93 : 5 - 29
  • [7] Probabilistic topic models for sequence data
    Barbieri, Nicola
    Manco, Giuseppe
    Ritacco, Ettore
    Carnuccio, Marco
    Bevacqua, Antonio
    [J]. MACHINE LEARNING, 2013, 93 (01) : 5 - 29
  • [8] Novelty Detection for Topic Tracking
    Aksoy, Cem
    Can, Fazli
    Kocberber, Seyit
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2012, 63 (04): : 777 - 795
  • [9] On-Line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking
    AlSumait, Loulwah
    Barbara, Daniel
    Domeniconi, Carlotta
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 3 - 12
  • [10] A probabilistic method for emerging topic tracking in Microblog stream
    Jiajia Huang
    Min Peng
    Hua Wang
    Jinli Cao
    Wang Gao
    Xiuzhen Zhang
    [J]. World Wide Web, 2017, 20 : 325 - 350