Bicategories in univalent foundations

被引:4
|
作者
Ahrens, Benedikt [1 ,2 ]
Frumin, Dan [3 ]
Maggesi, Marco [4 ]
Veltri, Niccolo [5 ]
van der Weide, Niels [2 ,6 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[3] Univ Groningen, Groningen, Netherlands
[4] Univ Firenze, Dipartimento Matemat & Informat Dini, Florence, Italy
[5] Tallinn Univ Technol, Dept Software Sci, Tallinn, Estonia
[6] Radboud Univ Nijmegen, Inst Computat & Informat Sci, Nijmegen, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Bicategory theory; univalent mathematics; dependent type theory; Coq; SYSTEMS;
D O I
10.1017/S0960129522000032
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories in a modular fashion, we develop displayed bicategories, an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. We demonstrate the applicability of this notion and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-categories is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.
引用
收藏
页数:38
相关论文
共 50 条