A double weighted fuzzy gamma naive bayes classifier

被引:6
|
作者
de Moraes, Ronei Marcos [1 ]
de Melo Gomes Soares, Elaine Anita [2 ]
Machado, Liliane dos Santos [3 ]
机构
[1] Univ Fed Paraiba, Dept Stat, Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Paraiba, Grad Program Decis Models & Hlth, Joao Pessoa, Paraiba, Brazil
[3] Univ Fed Paraiba, Dept Informat, Joao Pessoa, Paraiba, Brazil
关键词
Gamma statistical distribution; fuzzy classification; fuzzy statistics; double weighted naive bayes; AGREEMENT;
D O I
10.3233/JIFS-179431
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classifiers based on Gamma statistical distribution can be found in the scientific literature, but they assume the collected data doesn't present any errors. However, in some cases, information precision can not be guaranteed, then the fuzzy approach is convenient. Several methods found in the literature are not able to ponder the specific contribution of each class and/or feature for the classification tasks. This paper presents a proposal of a new classifier named Doubled Weighted Fuzzy Gamma Naive Bayes network (DW-FGamNB). This new classifier uses two types of weights in order to allow users to ponder the real contribution of each class and feature in the classification task. The theoretical development is presented, as well as results of its application on simulated multidimensional data using Gamma statistical distribution. A comparison among DW-FGamNB, Fuzzy Gamma Naive Bayes classifier, classical Gamma Naive Bayes classifier, Naive Bayes classifier, DecionTree-Naive Bayes, Decision Tree C4.5, Logistic Regression, Multilayer Perceptron Neural Network, Adaboost-M1, Radial Basis Function Network and Random Forest was performed. The results obtained showed that the DW-FGamNB produced the best performance, according to the Overall Accuracy Index, Kappa and Tau Coefficients, and diagnostic tests.
引用
收藏
页码:577 / 588
页数:12
相关论文
共 50 条
  • [1] A Fuzzy Gamma Naive Bayes classifier
    de Moraes, Ronei Marcos
    de Melo Gomes Soares, Elaine Anita
    Machado, Liliane dos Santos
    [J]. DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 691 - 699
  • [2] Attribute Weighted Naive Bayes Classifier
    Foo, Lee-Kien
    Chua, Sook-Ling
    Ibrahim, Neveen
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 1945 - 1957
  • [3] A FUZZY EXPONENTIAL NAIVE BAYES CLASSIFIER
    Moraes, R. M.
    Machado, L. S.
    [J]. UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 207 - 212
  • [4] One generalization of the naive Bayes to fuzzy sets and the design of the fuzzy naive Bayes classifier
    Zheng, JC
    Tang, YC
    [J]. ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING APPLICATIONS: A BIOINSPIRED APPROACH, PT 2, PROCEEDINGS, 2005, 3562 : 281 - 290
  • [5] Weighted Naive Bayes Classifier on Categorical Features
    Omura, Kazuhiro
    Kudo, Mineichi
    Endo, Tomomi
    Murai, Tetsuya
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 865 - 870
  • [6] A new fuzzy beta naive Bayes classifier
    de Moraes, Ronei Marcos
    Gomes Rodrigues, Anny Kerollayny
    de Melo Gomes Soares, Elaine Anita
    Machado, Liliane dos Santos
    [J]. DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 437 - 445
  • [7] An Aggregated Fuzzy Naive Bayes Data Classifier
    Tutuncu, G. Yazgi
    Kayaalp, Necla
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 286 : 17 - 27
  • [8] A Fuzzy Binomial Naive Bayes Classifier for Epidemiological Data
    Moraes, Ronei M.
    Machado, Liliane S.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 745 - 750
  • [9] A New Exponential Naive Bayes Classifier with Fuzzy Parameters
    Rodrigues, Anny K. G.
    Batista, Thiago V. V.
    Moraes, Ronei M.
    Machado, Liliane S.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1188 - 1194
  • [10] Attribute weighted Naive Bayes classifier using a local optimization
    Sona Taheri
    John Yearwood
    Musa Mammadov
    Sattar Seifollahi
    [J]. Neural Computing and Applications, 2014, 24 : 995 - 1002