CONSTRAINED PARTIAL LINEAR REGRESSION SPLINES

被引:7
|
作者
Meyer, Mary C. [1 ]
机构
[1] Colorado State Univ, 212 Stat Bldg, Ft Collins, CO 80523 USA
关键词
Constrained estimation; convergence rates; hypothesis testing; isotonic; smoothing; CONVERGENCE-RATES;
D O I
10.5705/ss.202016.0342
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The constrained partial linear model is fit using a single cone projection, without back-fitting. The cone formulation not only provides efficient computation, but also allows for derivation of convergence rates and inference methods. Conditions for simultaneous root-n convergence of the parameters and optimal convergence for the regression function are given. Hypothesis tests involving the nonlinear regression function, while controlling for the effects of the linear term, use a test statistic whose null distribution is that of a mixture-of-betas random variables, under the normal errors assumption. Inference involving the linear term uses approximate t and F distributions; simulations show these perform well compared to competitors.
引用
收藏
页码:277 / 292
页数:16
相关论文
共 50 条
  • [1] Convergence rates for constrained regression splines
    Meyer, Mary C.
    Kim, Soo-Young
    Wang, Haonan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 193 : 179 - 188
  • [2] Constrained Quantile Regression Splines for Ensemble Postprocessing
    Bremnes, John Bjornar
    [J]. MONTHLY WEATHER REVIEW, 2019, 147 (05) : 1769 - 1780
  • [3] Bayesian regression with multivariate linear splines
    Holmes, CC
    Mallick, BK
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 3 - 17
  • [4] Additive splines for partial least squares regression
    Durand, JF
    Sabatier, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1546 - 1554
  • [5] Semiparametric regression with shape-constrained penalized splines
    Hazelton, Martin L.
    Turlach, Berwin A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (10) : 2871 - 2879
  • [6] Estimation and inference for partial linear regression surfaces using monotone warped-plane splines
    Meyer, Mary C.
    Liao, Xiyue
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (01) : 1 - 21
  • [7] MODELING ASSOCIATION BETWEEN DNA COPY NUMBER AND GENE EXPRESSION WITH CONSTRAINED PIECEWISE LINEAR REGRESSION SPLINES
    Leday, Gwenael G. R.
    van der Vaart, Aad W.
    van Wieringen, Wessel N.
    van de Wiel, Mark A.
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (02): : 823 - 845
  • [8] A new approach to linear regression with multivariate splines
    de Visser, C. C.
    Chu, Q. P.
    Mulder, J. A.
    [J]. AUTOMATICA, 2009, 45 (12) : 2903 - 2909
  • [9] SMOOTHING SPLINES ESTIMATORS FOR FUNCTIONAL LINEAR REGRESSION
    Crambes, Christophe
    Kneip, Alois
    Sarda, Pascal
    [J]. ANNALS OF STATISTICS, 2009, 37 (01): : 35 - 72
  • [10] Robust functional linear regression based on splines
    Maronna, Ricardo A.
    Yohai, Victor J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 65 : 46 - 55