Assistance Control of Human-Exoskeleton Integrated System for Balance Recovery Augmentation in Sagittal Plane

被引:4
|
作者
Hua, Yuxiang [1 ]
Zhu, Yanmei [2 ]
Li, Changle [1 ]
Zhao, Jie [1 ]
Zhu, Yanhe [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
[2] Harbin Med Univ, Dept Neurol, Harbin 150086, Peoples R China
基金
国家重点研发计划;
关键词
Regulation; Torque; Exoskeletons; Muscles; Modulation; Lips; Perturbation methods; Balance recovery augmentation; balanced state identification; exoskeleton; virtual potential energy; DESIGN; LIMB; MASS;
D O I
10.1109/TIE.2021.3050363
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposed a humanoid balance assistance strategy (BAS) to enhance balance recovery in sagittal plane. Numerical construction of balanced state manifold (BSM) which accounts for active intervention of human ankles is developed to detect imbalance criticality (IC). A human-in-the-loop balance judgment criterion is established to appropriately trigger the external assistance intervention. A unified assistive torque controller based on minimization modulation of virtual potential energy (VPE) towards BSM is designed to augment posture regulation. Exploitation of BAS leads to the following contributions: 1) ICs in 6 typical imbalance situations are accurately detected, with identification error within 23.7%. 2) Traversal imbalanced region of center of mass (CoM) is reduced by 44.2% (with imbalanced position/velocity range (IPR/IVR) by 35.6%/34.3%). 3) Position offset (PO) and velocity impact (VI) at landing collision are reduced by 39.3% and 59.4%. 4) Elapsed time of balance recovery is reduced by 160-580 ms. Experimental verification demonstrates the significant augmentation for balance recovery by BAS.
引用
收藏
页码:528 / 538
页数:11
相关论文
共 50 条
  • [1] Human-exoskeleton Cooperative Balance Strategy for a Human-powered Augmentation Lower Exoskeleton
    Song, Guangkui
    Huang, Rui
    Peng, Zhinan
    Shi, Kecheng
    Zhang, Long
    He, Rong
    Qiu, Jing
    Zhan, Huayi
    Cheng, Hong
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 9744 - 9751
  • [2] Towards a more efficient human-exoskeleton assistance
    Monteiro, Sara
    Figueiredo, Joana
    Santos, Cristina
    2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC, 2023, : 181 - 186
  • [3] Impedance Reduction Control of a Knee Joint Human-Exoskeleton System
    Huo, Weiguang
    Mohammed, Samer
    Amirat, Yacine
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (06) : 2541 - 2556
  • [4] Dynamic Identification of a Human-Exoskeleton System
    Mallat, Randa
    Bonnet, Vincent
    Mohammed, Samer
    Mallat, Randa
    Khalil, Mohamad
    2017 FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2017, : 25 - 28
  • [5] Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System
    Wang, Zhipeng
    Yang, Chifu
    Ding, Zhen
    Yang, Tao
    Guo, Hao
    Jiang, Feng
    Tian, Bowen
    SENSORS, 2022, 22 (03)
  • [6] An Analysis of a Human-Exoskeleton System for Gait Rehabilitation
    Hou, Lei
    Wang, YiLin
    Qiu, Jing
    Wang, Lu
    Zheng, XiaoJuan
    Cheng, Hong
    ADVANCES IN AFFECTIVE AND PLEASURABLE DESIGN, 2019, 774 : 102 - 108
  • [7] Development of a Lower-Limb Exoskeleton for Assistance of Movements in the Sagittal Plane
    Garcia, Itzel
    Luna, Lourdes
    Mendoza, Marco
    Mejia-Rodriguez, Aldo
    Bonilla, Isela
    Dorantes-Mendez, Guadalupe
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 1023 - 1030
  • [8] Design and Evaluation of a Powered Hip Exoskeleton for Frontal and Sagittal Plane Assistance
    Archangeli, Dante
    Ortolano, Brendon
    Murray, Rosemarie
    Gabert, Lukas
    Lenzi, Tommaso
    2024 10TH IEEE RAS/EMBS INTERNATIONAL CONFERENCE FOR BIOMEDICAL ROBOTICS AND BIOMECHATRONICS, BIOROB 2024, 2024, : 1126 - 1131
  • [9] Fuzzy-based Impedance Regulation for Control of the Coupled Human-Exoskeleton System
    Tran, Huu-Toan
    Cheng, Hong
    Duong, Mien-Ka
    Zheng, Hangming
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 986 - 992
  • [10] Coupled Control of Human-Exoskeleton Systems: An Adaptative Process
    Ruiz, Andres F.
    Rocon, Eduardo
    Raya, Rafael
    Pons, Jose L.
    2008 CONFERENCE ON HUMAN SYSTEM INTERACTIONS, VOLS 1 AND 2, 2008, : 236 - 240