An Efficient Hybrid Method for 3D Scattering from Inhomogeneous Object Buried beneath a Dielectric Randomly Rough Surface

被引:3
|
作者
He, Hong-jie [1 ]
Guo, Li-xin [1 ]
Liu, Wei [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROMAGNETIC SCATTERING;
D O I
10.1155/2017/2847094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient iterative analytical-numerical method is proposed for three-dimensional (3D) electromagnetic scattering from an inhomogeneous object buried beneath a two-dimensional (2D) randomly dielectric rough surface. In the hybrid method, the electric and magnetic currents on the dielectric rough surface are obtained by current-based Kirchhoff approximation (KA), while the scattering from the inhomogeneous object is rigorously studied by finite element method (FEM) combined with the boundary integral method (BIM). The multiple interactions between the buried object and rough surface are taken into account by updating the electric and magnetic current densities on them. Several numerical simulations are considered to demonstrate the algorithm's ability to deal with the scattering from the inhomogeneous target buried beneath a dielectric rough surface, and the effectiveness of our proposed method is also illustrated.
引用
收藏
页数:8
相关论文
共 50 条