Stability analysis of high-order Hopfield type neural networks with uncertainty

被引:11
|
作者
Xu, Bingji [1 ]
Wang, Qun [1 ]
Liao, Xiaoxin [2 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 10083, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Control Sci & Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotically stable; parametrically asymptotically stable; uncertainty; high-order Hopfield type neural networks;
D O I
10.1016/j.neucom.2007.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper. the stability of high-order Hopfield type neural networks with uncertainty is analyzed, the parametric uncertainty is assumed to be bounded. The equilibrium point position may exist for any particular unknown parameter vector in the parameter space, every time one or more of the uncertainty parameters is changed, the equilibrium may shift to a new position or altogether disappear. In the framework of parametric stability, some sufficient conditions are established to guarantee the existence of a globally asymptotically stable equilibrium point for all admissible parametric uncertainties, and the region about the equilibrium point of the nominal part of the neural network that contains the equilibria for each parameter vector in the given subset of the parameter space be estimated. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:508 / 512
页数:5
相关论文
共 50 条
  • [1] Stability analysis for delayed high-order type of Hopfield neural networks with impulses
    Arbi, Adnene
    Aouiti, Chaouki
    Cherif, Farouk
    Touati, Abderrahmen
    Alimi, Adel M.
    [J]. NEUROCOMPUTING, 2015, 165 : 312 - 329
  • [2] Stability analysis of high-order analog Hopfield neural networks
    Su, J
    He, ZY
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 225 - 228
  • [3] Asymptotic stability of impulsive high-order Hopfield type neural networks
    Xu, Bingji
    Liu, Xiang
    Teo, Kok Lay
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (11-12) : 1968 - 1977
  • [4] Qualitative analysis of high-order hopfield neural networks
    Guan, Zhihong
    Sun, Debao
    Shen, Jianjing
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2000, 28 (03): : 77 - 80
  • [5] High-order Hopfield neural networks
    Shen, Y
    Zong, XJ
    Jiang, MH
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 235 - 240
  • [6] Exponential stability of delayed high-order hopfield-type neural networks with diffusion
    Xuyang, Lou
    Baotong, Cui
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 83 - +
  • [7] Global exponential stability of impulsive high-order Hopfield type neural networks with delays
    Xu, Bingji
    Liu, Xiang
    Teo, Kok Lay
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (11-12) : 1959 - 1967
  • [8] Global asymptotic stability of high-order Hopfield type neural networks with time delays
    Xu, BJ
    Liu, XZ
    Liao, XX
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (10-11) : 1729 - 1737
  • [9] LMI-based stability analysis of impulsive high-order Hopfield-type neural networks
    Xu, Bingji
    Xu, Yuan
    He, Linman
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 86 : 67 - 77
  • [10] STABILITY ANALYSIS OF HIGH-ORDER HOPFIELD-TYPE NEURAL NETWORKS BASED ON A NEW IMPULSIVE DIFFERENTIAL INEQUALITY
    Liu, Yang
    Yang, Rongjiang
    Lu, Jianquan
    Wu, Bo
    Cai, Xiushan
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (01) : 201 - 211