Generating random elements in finite groups

被引:0
|
作者
Dixon, John D. [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K2G 0E2, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2008年 / 15卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group of order g. A probability distribution Z on G is called E-uniform if vertical bar Z(x) - 1/g vertical bar <= epsilon/g for each x is an element of G. If x(1), x(2),...,x(m) is a list of elements of G, then the random cube Z(m) := Cubc(x(1),...,x(m)) is the probability distribution where Z(m)(y) is proportional to the number of ways in which y can be written as a product x(1)(epsilon 1)x(2)(epsilon 2)...x(m)(epsilon m) with each epsilon(i) = 0 or 1. Let x(1),...,x(d) be a list of generators for G and consider a sequence of cubes W-k := Cube(x(k)(-1),...,x(1)(-1), x(1),...,x(k)) where, for k > d, x(k) is chosen at random from Wk-1. Then we prove that for each delta > 0 there is a constant K-delta > 0 independent of G such that, with probability at least 1-delta, the distribution W-m is 1/4-uniform when m >= d + K-delta lg vertical bar G vertical bar. This justifies a proposed algorithm of Gene Cooperman for constructing random generators for groups. We also consider modifications of this algorithm which may be more suitable in practice.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Generating random elements of abelian groups
    Lukács, A
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (04) : 437 - 445
  • [2] GENERATING RANDOM ELEMENTS OF A FINITE-GROUP
    CELLER, F
    LEEDHAMGREEN, CR
    MURRAY, SH
    NIEMEYER, AC
    OBRIEN, EA
    [J]. COMMUNICATIONS IN ALGEBRA, 1995, 23 (13) : 4931 - 4948
  • [3] Strongly generating elements in finite and profinite groups
    Detomi, Eloisa
    Lucchini, Andrea
    [J]. JOURNAL OF ALGEBRA, 2023, 618 : 56 - 66
  • [4] Generating finite Coxeter groups with elements of the same order
    Hart, Sarah
    Kelsey, Veronica
    Rowley, Peter
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2623 - 2645
  • [5] Generating mapping class groups with elements of fixed finite order
    Lanier, Justin
    [J]. JOURNAL OF ALGEBRA, 2018, 511 : 455 - 470
  • [6] Maximal subgroups of finite groups avoiding the elements of a generating set
    Lucchini, Andrea
    Spiga, Pablo
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 185 (03): : 455 - 472
  • [7] Maximal subgroups of finite groups avoiding the elements of a generating set
    Andrea Lucchini
    Pablo Spiga
    [J]. Monatshefte für Mathematik, 2018, 185 : 455 - 472
  • [8] COUNTING INVERSIONS AND DESCENTS OF RANDOM ELEMENTS IN FINITE COXETER GROUPS
    Kahle, Thomas
    Stump, Christian
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (321) : 437 - 464
  • [9] GENERATING FINITE SOLUBLE GROUPS
    KOVACS, LG
    SIM, HS
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (02): : 229 - 232
  • [10] GENERATING SETS OF FINITE GROUPS
    Cameron, Peter J.
    Lucchini, Andrea
    Roney-Dougal, Colva M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (09) : 6751 - 6770