A NEW WAY TO DIRICHLET PROBLEMS FOR MINIMAL SURFACE SYSTEMS IN ARBITRARY DIMENSIONS AND CODIMENSIONS

被引:1
|
作者
Mao, Jing [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
关键词
Dirichlet problem; spacelike submanifold; mean curvature flow; maximum principle; MEAN-CURVATURE FLOW; EQUATIONS;
D O I
10.2206/kyushujm.69.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by considering a special case of the spacelike mean curvature flow investigated by Li and Salavessa [Math. Z. 269 (2011), 697-719], we obtain a condition for the existence of smooth solutions of the Dirichlet problem for the minimal surface equation in arbitrary codimension. We also show that our condition is sharper than Wang's [Comm Pure Appl. Math. 57 (2004), 267-281] provided that the hyperbolic angle 9 of the initial spacelike submanifold M-0 satisfies max(M0) cosh theta > root 2.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 11 条