共 50 条
On Some Zarankiewicz Numbers and Bipartite Ramsey Numbers for Quadrilateral
被引:0
|作者:
Dybizbanski, Janusz
[1
]
Dzido, Tomasz
[1
]
Radziszowski, Stanislaw
[2
,3
,4
]
机构:
[1] Univ Gdansk, Inst Informat, PL-80952 Gdansk, Poland
[2] Gdansk Univ Technol, Dept Algorithms & Syst Modeling, PL-80233 Gdansk, Poland
[3] Rochester Inst Technol, Dept Comp Sci, Rochester, NY 14623 USA
[4] Gdansk Univ Technol, PL-80233 Gdansk, Poland
来源:
关键词:
Zarankiewicz number;
Ramsey number;
projective plane;
LOWER BOUNDS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The Zarankiewicz number z(m, n; s, t) is the maximum number of edges in a subgraph of K-m,K-n that does not contain K-s,K-t as a subgraph. The bipartite Ramsey number b(ni, ... , n(k)) is the least positive integer b such that any coloring of the edges of K-b,K-b with k colors will result in a monochromatic copy of K-n,K-ni in the i-th color, for some i, 1 <= i <= k. If n(i) = m for all i, then we denote this number by b(k)(m). In this paper we obtain the exact values of some Zarankiewicz numbers for quadrilateral (s = t = 2), and we derive new bounds for diagonal multicolor bipartite Ramsey numbers avoiding quadrilateral. In particular, we prove that b(4)(2) = 19, and establish new general lower and upper bounds on b(k) (2).
引用
收藏
页码:275 / 287
页数:13
相关论文