A comparison of parametric and Nonparametric methods for normalising cDNA microarray data

被引:9
|
作者
Khondoker, Mizanur R. [1 ,2 ]
Glasbey, Chris A. [1 ]
Worton, Bruce J. [2 ]
机构
[1] Biomath & Stat Scotland, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
arsinh transformation; GAMLSS; gene expression; Microarrays; p-splines;
D O I
10.1002/bimj.200610338
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Normalisation is an essential first step in the analysis of most cDNA microarray data, to correct for effects arising from imperfections in the technology. Loess smoothing is commonly used to correct for trends in log-ratio data. However, parametric models, such as the additive plus multiplicative variance model, have been preferred for scale normalisation, though the variance structure of microarray data may be of a more complex nature than can be accommodated by a parametric model. We propose a new nonparametric approach that incorporates location and scale normalisation simultaneously using a Generalised Additive Model for Location, Scale and Shape (GAMLSS, Rigby and Stasinopoulos, 2005, Applied Statistics, 54, 507-554). We compare its performance in inferring differential expression with Huber et al.'s (2002, Bioinformatics, 18, 96-104) arsinh variance stabilising transformation (AVST) using real and simulated data. We show GAMLSS to be as powerful as AVST when the parametric model is correct, and more powerful when the model is wrong.
引用
收藏
页码:815 / 823
页数:9
相关论文
共 50 条
  • [1] Comparison of methods for image analysis on cDNA microarray data
    Yang, YH
    Buckley, MJ
    Dudoit, S
    Speed, TP
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (01) : 108 - 136
  • [2] New normalization methods for cDNA microarray data
    Wilson, DL
    Buckley, MJ
    Helliwell, CA
    Wilson, IW
    [J]. BIOINFORMATICS, 2003, 19 (11) : 1325 - 1332
  • [3] Contamination removal methods in cDNA microarray data
    Chan, Shih-Huang
    Chang, Wan-Chi
    Lin, Chien-Ju
    [J]. 2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 39 - +
  • [4] A Comparison of Parametric and Nonparametric Analyses of Opinion Data
    Rosen, Hjalmar
    Rosen, R. A. Hudson
    [J]. JOURNAL OF APPLIED PSYCHOLOGY, 1955, 39 (06) : 401 - 404
  • [5] Comparison of parametric and nonparametric methods for the analysis and inversion of immittance data: Critique of earlier work
    Macdonald, JR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (01) : 280 - 301
  • [6] INVESTIGATIONS INTO PARAMETRIC ANALYSIS OF DATA FROM INVIVO MICRONUCLEUS ASSAYS BY COMPARISON WITH NONPARAMETRIC METHODS
    MITCHELL, ID
    BRICE, AJ
    [J]. MUTATION RESEARCH, 1986, 159 (1-2): : 139 - 146
  • [7] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Sahebalam, Hamid
    Gholizadeh, Mohsen
    Hafezian, Hasan
    Farhadi, Ayoub
    [J]. JOURNAL OF GENETICS, 2019, 98 (04)
  • [8] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Hamid Sahebalam
    Mohsen Gholizadeh
    Hasan Hafezian
    Ayoub Farhadi
    [J]. Journal of Genetics, 2019, 98
  • [9] Comparison of parametric and nonparametric methods to map oligogenes by linkage
    Lio, P
    Morton, NE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) : 5344 - 5348
  • [10] A comparison of nonparametric and parametric methods to adjust for baseline measures
    Carlsson, Martin O.
    Zou, Kelly H.
    Yu, Ching-Ray
    Liu, Kezhen
    Sun, Franklin W.
    [J]. CONTEMPORARY CLINICAL TRIALS, 2014, 37 (02) : 225 - 233