Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks

被引:55
|
作者
Ishida, Shoichi [1 ]
Terayama, Kei [2 ,3 ,4 ]
Kojima, Ryosuke [4 ]
Takasu, Kiyosei [1 ]
Okuno, Yasushi [3 ,4 ,5 ]
机构
[1] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Chuo Ku, Tokyo 1030027, Japan
[3] RIKEN, Cluster Sci Technol & Innovat Hub, Med Sci Innovat Hub Program, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
[4] Kyoto Univ, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan
[5] Fdn Biomed Res & Innovat Kobe, Ctr Cluster Dev & Coordinat, Chuo Ku, Kobe, Hyogo 6500047, Japan
关键词
COMPUTER;
D O I
10.1021/acs.jcim.9b00538
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Recently, many research groups have been addressing data-driven approaches for (retro)synthetic reaction prediction and retrosynthetic analysis. Although the performances of the data-driven approach have progressed because of recent advances of machine learning and deep learning techniques, problems such as improving capability of reaction prediction and the black-box problem of neural networks persist for practical use by chemists. To spread data-driven approaches to chemists, we focused on two challenges: improvement of retrosynthetic reaction prediction and interpretability of the prediction. In this paper, we propose an interpretable prediction framework using graph convolutional networks (GCN) for retrosynthetic reaction prediction and integrated gradients (IG) for visualization of contributions to the prediction to address these challenges. As a result, from the viewpoint of balanced accuracies, our model showed better performances than the approach using an extended-connectivity fingerprint. Furthermore, IG-based visualization of the GCN prediction successfully highlighted reaction-related atoms.
引用
收藏
页码:5026 / 5033
页数:8
相关论文
共 50 条
  • [1] Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
    Weber, Jeffrey K.
    Morrone, Joseph A.
    Bagchi, Sugato
    Pabon, Jan D. Estrada
    Kang, Seung-gu
    Zhang, Leili
    Cornell, Wendy D.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (05) : 391 - 404
  • [2] Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
    Xie, Tian
    Grossman, Jeffrey C.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [3] Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
    Jeffrey K. Weber
    Joseph A. Morrone
    Sugato Bagchi
    Jan D. Estrada Pabon
    Seung-gu Kang
    Leili Zhang
    Wendy D. Cornell
    [J]. Journal of Computer-Aided Molecular Design, 2022, 36 : 391 - 404
  • [4] Visualization for Histopathology Images using Graph Convolutional Neural Networks
    Sureka, Mookund
    Patil, Abhijeet
    Anand, Deepak
    Sethi, Amit
    [J]. 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 331 - 335
  • [5] Human Pose Prediction Using Interpretable Graph Convolutional Network for Smart Home
    Yang, Boyu
    Hu, Liyazhou
    Peng, Yuyang
    Wang, Tingting
    Fang, Xiaofen
    Wang, Lina
    Fang, Kai
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 876 - 888
  • [6] Protein Interface Prediction using Graph Convolutional Networks
    Fout, Alex
    Byrd, Jonathon
    Shariat, Basir
    Ben-Hur, Asa
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [7] Interpretable Prediction of Post-Infarct Ventricular Arrhythmia Using Graph Convolutional Network
    Ly, Buntheng
    Finsterbach, Sonny
    Nuñez-Garcia, Marta
    Jais, Pierre
    Garreau, Damien
    Cochet, Hubert
    Sermesant, Maxime
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13593 LNCS : 157 - 167
  • [8] Interpretable Prediction of Post-Infarct Ventricular Arrhythmia Using Graph Convolutional Network
    Ly, Buntheng
    Finsterbach, Sonny
    Nunez-Garcia, Marta
    Jais, Pierre
    Garreau, Damien
    Cochet, Hubert
    Sermesant, Maxime
    [J]. STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: REGULAR AND CMRXMOTION CHALLENGE PAPERS, STACOM 2022, 2022, 13593 : 157 - 167
  • [9] Traffic Prediction in Optical Networks Using Graph Convolutional Generative Adversarial Networks
    Vinchoff, C.
    Chung, N.
    Gordon, T.
    Lyford, L.
    Aibin, M.
    [J]. 2020 22ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2020), 2020,
  • [10] Exploring interpretable graph convolutional networks for autism spectrum disorder diagnosis
    Lanting Li
    Guangqi Wen
    Peng Cao
    Xiaoli Liu
    Osmar R. Zaiane
    Jinzhu Yang
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 663 - 673