On the norm and spectral radius of Hermitian elements

被引:0
|
作者
Norvidas, S. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
Banach algebras; Hermitian elements; numerical range; spectrum; spectral radius; functional calculus; universal symbols; positive-definite functions;
D O I
10.1007/s10986-008-0009-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a complex unital Banach algebra. An element a is an element of A is said to be Hermitian if parallel to exp(ita)parallel to = 1 for all t is an element of R. In the case of the algebra of bounded linear operators in a Hilbert space, this Hermitian property agrees with the ordinary self-adjointness. If a is an element of A is Hermitian, then parallel to a parallel to =vertical bar a vertical bar where a denotes the spectral radius of a. A function F: R -> C is called a universal symbol if parallel to F(a)parallel to = vertical bar F(a)vertical bar for every A and all Hermitian a is an element of A. We characterize universal symbols in terms of positive-definite functions.
引用
收藏
页码:92 / 99
页数:8
相关论文
共 50 条