Editorial for "MRI-Based Machine Learning for Differentiating Borderline From Malignant Epithelial Ovarian Tumors"

被引:2
|
作者
Araki, Tetsuro [1 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
关键词
RADIOGENOMICS;
D O I
10.1002/jmri.27161
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
引用
收藏
页码:905 / 905
页数:1
相关论文
共 50 条
  • [1] MRI-Based Machine Learning for Differentiating Borderline From Malignant Epithelial Ovarian Tumors: A Multicenter Study
    Li, Yong'ai
    Jian, Junming
    Pickhardt, Perry J.
    Ma, Fenghua
    Xia, Wei
    Li, Haiming
    Zhang, Rui
    Zhao, Shuhui
    Cai, Songqi
    Zhao, Xingyu
    Zhang, Jiayi
    Zhang, Guofu
    Jiang, Jingxuan
    Zhang, Yan
    Wang, Keying
    Lin, Guangwu
    Feng, Feng
    Lu, Jing
    Deng, Lin
    Wu, Xiaodong
    Qiang, Jinwei
    Gao, Xin
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (03) : 897 - 904
  • [2] MRI features and score for differentiating borderline from malignant epithelial ovarian tumors
    Li, Yong Ai
    Qiang, Jin Wei
    Ma, Feng Hua
    Li, Hai Ming
    Zhao, Shu Hui
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2018, 98 : 136 - 142
  • [3] Editorial for "MRI-Based Multiple Instance Convolutional Neural Network (MICNN) for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors"
    Loukas, Constantinos
    Kelekis, Nikolaos L.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (01) : 182 - 183
  • [4] Differentiation of Borderline Epithelial Ovarian Tumors from Benign and Malignant Epithelial Ovarian Tumors by MRI Scoring
    Babaoglu, Seyma
    Atas, Abdullah Enes
    Kerimoglu, Ulku
    Iyisoy, Mehmet Sinan
    Kilinc, Fahriye
    [J]. CURRENT MEDICAL IMAGING, 2024, 20
  • [5] MRI-Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors
    Jian, Junming
    Li, Yong'ai
    Xia, Wei
    He, Zhang
    Zhang, Rui
    Li, Haiming
    Zhao, Xingyu
    Zhao, Shuhui
    Zhang, Jiayi
    Cai, Songqi
    Wu, Xiaodong
    Gao, Xin
    Qiang, Jinwei
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (01) : 173 - 181
  • [6] CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors
    Chen, Jia
    Liu, Lei
    He, Ziying
    Su, Danke
    Liu, Chanzhen
    [J]. JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (01): : 180 - 195
  • [7] Computed Tomography Indicators for Differentiating Stage 1 Borderline Ovarian Tumors from Stage I Malignant Epithelial Ovarian Tumors
    Moon, Min Hoan
    Park, Hee Sun
    Kim, Young Jun
    Yu, Mi Hye
    Park, Sungeun
    Jung, Sung Il
    [J]. DIAGNOSTICS, 2023, 13 (03)
  • [8] Editorial for "Histogram Analysis Comparison of Monoexponential, Advanced Diffusion- Weighted Imaging, and Dynamic Contrast-Enhanced MRI for Differentiating Borderline From Malignant Epithelial Ovarian Tumors"
    Ye, Zezhong
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (01) : 269 - 270
  • [9] Value of normalized apparent diffusion coefficients in differentiating between borderline and malignant epithelial ovarian tumors
    Lu, Jing
    Pi, Shan
    Ma, Feng Hua
    Zhao, Shu Hui
    Li, Hai Ming
    Cai, Shu Lei
    Qiang, Jin Wei
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2019, 118 : 44 - 50
  • [10] Quantitative analysis of the MRI features in the differentiation of benign, borderline, and malignant epithelial ovarian tumors
    Xiao, Fuxia
    Zhang, Lin
    Yang, Sihua
    Peng, Kun
    Hua, Ting
    Tang, Guangyu
    [J]. JOURNAL OF OVARIAN RESEARCH, 2022, 15 (01)