Lusin and Suslin properties of function spaces

被引:0
|
作者
Banakh, Taras [1 ,2 ]
Wang, Leijie [3 ]
机构
[1] Jan Kochanowski Univ Kielce, Kielce, Poland
[2] Ivan Franko Natl Univ Lviv, Lvov, Ukraine
[3] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Fell hypograph topology; Compact-open topology; pointwise convergence topology; Lusin space; Suslin space; aleph(0)-Space; Cosmic space; omega(omega)-Base; TOPOLOGICAL CLASSIFICATION; K-SPACES;
D O I
10.1007/s13398-020-00862-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological space is Suslin (Lusin) if it is a continuous (and bijective) image of a Polish space. For aTychonoff space X letCp( X), Ck( X) andC.F( X) be the space of continuous realvalued functions on X, endowed with the topology of pointwise convergence, the compactopen topology, and the Fell hypograph topology, respectively. For a metrizable space X we prove the equivalence of the following statements: (1) X is s-compact, (2) Cp( X) is Suslin, (3) Ck ( X) is Suslin, (4) C.F( X) is Suslin, (5) Cp(X) is Lusin, (6) Ck ( X) is Lusin, (7) C.F( X) is Lusin, (8) Cp(X) is Fs -Lusin, (9) Ck (X) is Fs -Lusin, (10) C.F(X) is Cds -Lusin. Also we construct an example of a sequential.0-space X with a unique non-isolated point such that the function spaces Cp( X), Ck ( X) and C. F( X) are non-Suslin.
引用
收藏
页数:18
相关论文
共 50 条