Self-Sustaining Representation Expansion for Non-Exemplar Class-Incremental Learning

被引:42
|
作者
Zhu, Kai [1 ]
Zhai, Wei [1 ]
Cao, Yang [1 ,3 ]
Luo, Jiebo [2 ]
Zha, Zheng-Jun [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Univ Rochester, Rochester, NY USA
[3] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/CVPR52688.2022.00908
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-exemplar class-incremental learning is to recognize both the old and new classes when old class samples cannot be saved. It is a challenging task since representation optimization and feature retention can only be achieved under supervision from new classes. To address this problem, we propose a novel self-sustaining representation expansion scheme. Our scheme consists of a structure reorganization strategy that fuses main-branch expansion and side-branch updating to maintain the old features, and a main-branch distillation scheme to transfer the invariant knowledge. Furthermore, a prototype selection mechanism is proposed to enhance the discrimination between the old and new classes by selectively incorporating new samples into the distillation process. Extensive experiments on three benchmarks demonstrate significant incremental performance, outperforming the state-of-the-art methods by a margin of 3%, 3% and 6%, respectively.
引用
收藏
页码:9286 / 9295
页数:10
相关论文
共 50 条
  • [1] Self-Organizing Pathway Expansion for Non-Exemplar Class-Incremental Learning
    Zhu, Kai
    Zheng, Kecheng
    Feng, Ruili
    Zhao, Deli
    Cao, Yang
    Zha, Zheng-Jun
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19147 - 19156
  • [2] Non-Exemplar Class-Incremental Learning via Adaptive Old Class Reconstruction
    Wang, Shaokun
    Shi, Weiwei
    He, Yuhang
    Yu, Yifan
    Gong, Yihong
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4524 - 4534
  • [3] Non-exemplar Class-incremental Learning via Dual Augmentation and Dual Distillation
    Song, Ke
    Xia, Quan
    Qiu, Zhaoyong
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [4] Prototype Reminiscence and Augmented Asymmetric Knowledge Aggregation for Non-Exemplar Class-Incremental Learning
    Shi, Wuxuan
    Ye, Mang
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1772 - 1781
  • [5] Class-Incremental Exemplar Compression for Class-Incremental Learning
    Luo, Zilin
    Liu, Yaoyao
    Schiele, Bernt
    Sun, Qianru
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11371 - 11380
  • [6] Representation Robustness and Feature Expansion for Exemplar-Free Class-Incremental Learning
    Luo, Yong
    Ge, Hongwei
    Liu, Yuxuan
    Wu, Chunguo
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5306 - 5320
  • [7] Non-exemplar Online Class-Incremental Continual Learning via Dual-Prototype Self-Augment and Refinement
    Huo, Fushuo
    Xu, Wenchao
    Guo, Jingcai
    Wang, Haozhao
    Fan, Yunfeng
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 12698 - 12707
  • [8] Exemplar-Supported Representation for Effective Class-Incremental Learning
    Guo, Lei
    Xie, Gang
    Xu, Xinying
    Ren, Jinchang
    [J]. IEEE ACCESS, 2020, 8 : 51276 - 51284
  • [9] Fine-Grained Knowledge Selection and Restoration for Non-exemplar Class Incremental Learning
    Zhai, Jiang-Tian
    Liu, Xialei
    Yu, Lu
    Cheng, Ming-Ming
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6971 - 6978
  • [10] FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
    Petit, Gregoire
    Popescu, Adrian
    Schindler, Hugo
    Picard, David
    Delezoide, Bertrand
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3900 - 3909