Multimodal biometric systems allow to overcome some of the problems presented in unimodal systems, such as non-universality, lack of distinctiveness of the unimodal trait, noise in the acquired data, etc. Integration at the matching score level is the most common approach used due to the ease in combining the scores generated by different unimodal systems. Unfortunately, scores usually lie in application-dependent domains. In this work, we use linear logistic regression fusion. in which fused scores tend to be calibrated log-likelihood-ratios and thus. independent of the application. We use for our experiments the development set of scores of the DS2 Evaluation (Access Control Scenario) of the BioSecure Multimodal Evaluation Campaign, whose objective is to compare the performance of fusion algorithms when query biometric signals are originated from heterogeneous biometric devices. We compare a fusion scheme that uses linear logistic regression with a set of simple fusion rules. It is observed that the proposed fusion scheme outperforms all the simple fusion rules, with the additional advantage of the application-independent nature of the resulting fused scores.