Basis selection for wavelet processing of sparse signals

被引:3
|
作者
Atkinson, Ian C. [1 ,2 ,3 ]
Kamalabadi, Farzad [4 ,5 ]
机构
[1] Univ Illinois, Dept Radiol, Chicago, IL 60612 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60612 USA
[3] Univ Illinois, Ctr MR Res, Chicago, IL 60612 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
关键词
wavelet transforms; signal representations;
D O I
10.1016/j.sigpro.2008.03.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sparsity of a signal in a wavelet domain depends on both the wavelet basis and the exact form of the signal. We consider the selection of a wavelet basis that can efficiently represent a piecewise polynomial signal that is itself sparse in the signal domain. Accounting for the inherent sparsity of the signal allows for the maximum wavelet filter length and number of decomposition levels to be computed so as to guarantee that the resulting wavelet-domain representation is at least as sparse as the-original signal, a desirable property for most wavelet processing techniques. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2340 / 2345
页数:6
相关论文
共 50 条
  • [1] Basis selection for wavelet processing of sparse source signals
    Atkinson, Ian
    Kamalabadi, Farzad
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1461 - +
  • [2] An automatic method for wavelet basis election and threshold selection for signals estimation
    Vega Gonzalez, Cristobal E.
    [J]. INGENIERIA UC, 2009, 16 (01): : 32 - 39
  • [3] Compression of biomedical signals with mother wavelet optimization and best-basis wavelet packet selection
    Brechet, Laurent
    Lucas, Marie-Francoise
    Doncarli, Christian
    Farina, Dario
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (12) : 2186 - 2192
  • [4] Sublinear recovery of sparse wavelet signals
    Maleh, R.
    Gilbert, A. C.
    [J]. DCC: 2008 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 342 - 351
  • [5] Asynchronous processing of sparse signals
    Can-Cimino, Azime
    Sejdic, Ervin
    Chaparro, Luis F.
    [J]. IET SIGNAL PROCESSING, 2014, 8 (03) : 257 - 266
  • [6] Basis selection for wavelet regression
    Wheeler, KR
    Dhawan, AP
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 627 - 633
  • [7] Selection Method of Optimal Wavelet Basis Function for Aeromagnetic Anomaly Signal Processing
    Yu, Zhentao
    Chen, Jie
    Zhang, Baoqiang
    Wang, Dan
    Jiang, Hao
    [J]. JOURNAL OF COASTAL RESEARCH, 2020, : 530 - 534
  • [8] Research on forwarding and model experiment of wavelet basis selection for quantitative identification of GPR signals
    Zhou, Zhihui
    Ling, Tonghua
    Yang, Zhigang
    Wu, Weixiang
    Zhang, Liang
    He, Wenchao
    [J]. Journal of Railway Science and Engineering, 2021, 18 (06) : 1529 - 1536
  • [9] Sparse Bayesian learning for basis selection
    Wipf, DP
    Rao, BD
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2153 - 2164
  • [10] Wavelet packet transform applied to a set of signals: A new approach to the best-basis selection
    Walczak, B
    Massart, DL
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 38 (01) : 39 - 50