Integrating multi-omics data to identify dysregulated modules in endometrial cancer

被引:1
|
作者
Chen, Zhongli
Liang, Biting
Wu, Yingfu
Liu, Quanzhong
Zhang, Hongming
Wu, Hao [1 ,2 ]
机构
[1] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland, New Zealand
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
differentially expressed genes; mutated genes; protein-protein interaction networks; dysregulated modules; endometrial cancer; MATRIX METALLOPROTEINASE-7; PATHWAYS; EXPRESSION; CARCINOMA; ESTROGEN; PROLIFERATION; ACTIVATION; PI3K/AKT; UTERINE;
D O I
10.1093/bfgp/elac010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cancer is generally caused by genetic mutations, and differentially expressed genes are closely associated with genetic mutations. Therefore, mutated genes and differentially expressed genes can be used to study the dysregulated modules in cancer. However, it has become a big challenge in cancer research how to accurately and effectively detect dysregulated modules that promote cancer in massive data. In this study, we propose a network-based method for identifying dysregulated modules (Netkmeans). Firstly, the study constructs an undirected-weighted gene network based on the characteristics of high mutual exclusivity, high coverage and complex network topology among genes widely existed in the genome. Secondly, the study constructs a comprehensive evaluation function to select the number of clusters scientifically and effectively. Finally, the K-means clustering method is applied to detect the dysregulated modules. Compared with the results detected by IBA and CCEN methods, the results of Netkmeans proposed in this study have higher statistical significance and biological relevance. Besides, compared with the dysregulated modules detected by MCODE, CFinder and ClusterONE, the results of Netkmeans have higher accuracy, precision and F-measure. The experimental results show that the multiple dysregulated modules detected by Netkmeans are essential in the generation, development and progression of cancer, and thus they play a vital role in the precise diagnosis, treatment and development of new medications for cancer patients.
引用
收藏
页码:310 / 324
页数:15
相关论文
共 50 条
  • [1] ModulOmics: Integrating Multi-Omics Data to Identify Cancer Driver Modules
    Silverbush, Dana
    Cristea, Simona
    Yanovich, Gali
    Geiger, Tamar
    Beerenwinkel, Niko
    Sharan, Roded
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2018, 2018, 10812 : 283 - 284
  • [2] A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes
    Guo, Yang
    Zheng, Jianning
    Shang, Xuequn
    Li, Zhanhuai
    GENES, 2018, 9 (07):
  • [3] Integration of Multi-Omics Data to Identify Cancer Biomarkers
    Li, Peng
    Sun, Bo
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2022, 15 (01)
  • [4] Integrating multi-omics data for crop improvement
    Scossa, Federico
    Alseekh, Saleh
    Fernie, Alisdair R.
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 257
  • [5] Identification of functional gene modules by integrating multi-omics data and known molecular interactions
    Chen, Xiaoqing
    Han, Mingfei
    Li, Yingxing
    Li, Xiao
    Zhang, Jiaqi
    Zhu, Yunping
    FRONTIERS IN GENETICS, 2023, 14
  • [6] Identifying mutated driver pathways in cancer by integrating multi-omics data
    Wu, Jingli
    Cai, Qirong
    Wang, Jinyan
    Liao, Yuanxiu
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 (159-167) : 159 - 167
  • [7] SSIG: Single-Sample Information Gain Model for Integrating Multi-Omics Data to Identify Cancer Subtypes
    Yuanyuan, Zhang
    Ziqi, Wang
    Shudong, Wang
    Chuanhua, Kou
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (02) : 303 - 312
  • [8] SSIG: Single-Sample Information Gain Model for Integrating Multi-Omics Data to Identify Cancer Subtypes
    ZHANG Yuanyuan
    WANG Ziqi
    WANG Shudong
    KOU Chuanhua
    Chinese Journal of Electronics, 2021, 30 (02) : 303 - 312
  • [9] Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules
    Silverbush, Dana
    Cristea, Simona
    Yanovich-Arad, Gali
    Geiger, Tamar
    Beerenwinkel, Niko
    Sharan, Roded
    CELL SYSTEMS, 2019, 8 (05) : 456 - +
  • [10] Identification of Regulatory Modules That Stratify Lupus Disease Mechanism through Integrating Multi-Omics Data
    Wang, Ting-You
    Wang, Yong-Fei
    Zhang, Yan
    Shen, Jiangshan Jane
    Guo, Mengbiao
    Yang, Jing
    Lau, Yu Lung
    Yang, Wanling
    MOLECULAR THERAPY NUCLEIC ACIDS, 2020, 19 : 318 - 329