Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids

被引:23
|
作者
Yousefi, Fakhri [1 ]
Mohammadiyan, Somayeh [1 ]
Karimi, Hajir [2 ]
机构
[1] Univ Yasuj, Dept Chem, Yasuj 75914353, Iran
[2] Univ Yasuj, Dept Chem Engn, Yasuj 75914353, Iran
关键词
EQUATION-OF-STATE; HEAT-TRANSFER; ETHYLENE-GLYCOL; VOLUMETRIC PROPERTIES; PARTICLE-SIZE; ENHANCEMENT; TRANSPORT; MIXTURE; TEMPERATURE; SUSPENSIONS;
D O I
10.1007/s00231-015-1730-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper applies a model including back-propagation network (BPN) and principal component analysis (PCA) to compute the effective thermal conductivities of nanofluids such as Al2O3/(60:40)EG:H2O, Al2O3/W, Al2O3/(20:80)EG:W, Al2O3/(50:50)EG:W, ZnO/(60:40) EG:W, CuO/(60:40)EG:W, CuO/W, CuO/(50:50)EG:W, TiO2/W, TiO2/(20:80)EG:W, Fe3O4/(20:80) EG:W, Fe3O4/(60:40) EG:W, Fe3O4/(40:60) EG:W and Fe3O4/W, as a function of the temperature, thermal conductivity of nano particle, volume fraction of nanoparticle, diameter of nanoparticle and the thermal conductivity of base fluids. The obtained results by BPN-PCA model have good agreement with the experimental data with absolute average deviation and high correlation coefficients 1.47 % and 0.9942, respectively.
引用
收藏
页码:2141 / 2154
页数:14
相关论文
共 50 条
  • [1] Application of artificial neural network and PCA to predict the thermal conductivities of nanofluids
    Fakhri Yousefi
    Somayeh Mohammadiyan
    Hajir Karimi
    Heat and Mass Transfer, 2016, 52 : 2141 - 2154
  • [2] Application of artificial neural network to predict building thermal load
    1600, China Educ Publ Import Export Corp, China (33):
  • [3] Application of artificial neural network to predict building thermal load
    Yang, Ziqiang
    Lu, Yajun
    Harbin Jianzhu Daxue Xuebao/Journal of Harbin University of Civil Engineering and Architecture, 2000, 33 (01): : 51 - 54
  • [4] Application of artificial neural network to predict thermal transmittance of wooden windows
    Buratti, Cinzia
    Barelli, Linda
    Moretti, Elisa
    APPLIED ENERGY, 2012, 98 : 425 - 432
  • [5] Modeling of thermal diffusivity of nanofluids using artificial neural network
    Yousefi, Fakhri
    Parsazadeh, Nadieh
    HIGH TEMPERATURES-HIGH PRESSURES, 2017, 46 (06) : 459 - 480
  • [6] Application of Artificial Neural Network to Predict the Thermal and Thermomechanical Behavior of Refractory Linings
    Hou, Aidong
    Jin, Shengli
    Gruber, Dietmar
    Harmuth, Harald
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids
    Longo, Giovanni A.
    Zilio, Claudio
    Ceseracciu, Elena
    Reggiani, Monica
    NANO ENERGY, 2012, 1 (02) : 290 - 296
  • [8] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Ismail, A. S.
    Sathyamurthy, Ravishankar
    Abdelhamid, Talaat
    Edreis, Elbager M. A.
    Kabeel, A. E.
    Haiou, Zhang
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [9] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [10] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Ammar H. Elsheikh
    Swellam W. Sharshir
    A. S. Ismail
    Ravishankar Sathyamurthy
    Talaat Abdelhamid
    Elbager M. A. Edreis
    A. E. Kabeel
    Zhang Haiou
    SN Applied Sciences, 2020, 2