Ramsey numbers in octahedron graphs

被引:2
|
作者
Harborth, H [1 ]
Mengersen, I [1 ]
机构
[1] Tech Univ Braunschweig, D-38023 Braunschweig, Germany
关键词
D O I
10.1016/S0012-365X(00)00320-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The octahedron Ramsey number r(O) = r(O)(G(1),....G(t)) is introduced as the smallest n such that any t-coloring of the edges of the octahedron graph O-n =K-2n - nK(2) contains for some i a subgraph G(i) of color i. With r = r(G(i),..., G(t)) denoting the classical Ramsey number, ro is between r/2 and r. If all G(i)'s are complete, then r(O) = r. If all G(i)'s are certain stars, then r(O) = [r/2]. For all G(i) with at most four vertices, all values r(O)(G(1),G(2)) are listed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [1] COMPLEMENTARY RAMSEY NUMBERS AND RAMSEY GRAPHS
    Munemasa, Akihiro
    Shinohara, Masashi
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (02) : 146 - 153
  • [2] On pattern Ramsey numbers of graphs
    Jamison, RE
    West, DB
    GRAPHS AND COMBINATORICS, 2004, 20 (03) : 333 - 339
  • [3] On graphs with linear Ramsey numbers
    Graham, RL
    Rödl, V
    Rucinski, A
    JOURNAL OF GRAPH THEORY, 2000, 35 (03) : 176 - 192
  • [4] LOWER RAMSEY NUMBERS FOR GRAPHS
    MYNHARDT, CM
    DISCRETE MATHEMATICS, 1991, 91 (01) : 69 - 75
  • [5] Constrained Ramsey numbers of graphs
    Jamison, RE
    Jiang, T
    Ling, ACH
    JOURNAL OF GRAPH THEORY, 2003, 42 (01) : 1 - 16
  • [6] Degree Ramsey Numbers of Graphs
    Kinnersley, William B.
    Milans, Kevin G.
    West, Douglas B.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2): : 229 - 253
  • [7] Ramsey numbers of ordered graphs
    Balko, Martin
    Cibulka, Josef
    Kral, Karel
    Kyncl, Jan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (01):
  • [8] ON IRREDUNDANT RAMSEY NUMBERS FOR GRAPHS
    HATTINGH, JH
    JOURNAL OF GRAPH THEORY, 1990, 14 (04) : 437 - 441
  • [9] On Ramsey numbers of sparse graphs
    Kostochka, A
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (5-6): : 627 - 641
  • [10] Ramsey numbers for sparse graphs
    Eaton, N
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 63 - 75