The health and climate impacts of carbon capture and direct air capture

被引:69
|
作者
Jacobson, Mark Z. [1 ]
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
关键词
139; COUNTRIES; GAS; EMISSIONS; WATER; WIND; CO2;
D O I
10.1039/c9ee02709b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Data from a coal with carbon capture and use (CCU) plant and a synthetic direct air carbon capture and use (SDACCU) plant are analyzed for the equipment's ability, alone, to reduce CO2. In both plants, natural gas turbines power the equipment. A net of only 10.8% of the CCU plant's CO2-equivalent (CO(2)e) emissions and 10.5% of the CO2 removed from the air by the SDACCU plant are captured over 20 years, and only 20-31%, are captured over 100 years. The low net capture rates are due to uncaptured combustion emissions from natural gas used to power the equipment, uncaptured upstream emissions, and, in the case of CCU, uncaptured coal combustion emissions. Moreover, the CCU and SDACCU plants both increase air pollution and total social costs relative to no capture. Using wind to power the equipment reduces CO(2)e relative to using natural gas but still allows air pollution emissions to continue and increases the total social cost relative to no carbon capture. Conversely, using wind to displace coal without capturing carbon reduces CO(2)e, air pollution, and total social cost substantially. In sum, CCU and SDACCU increase or hold constant air pollution health damage and reduce little carbon before even considering sequestration or use leakages of carbon back to the air. Spending on capture rather than wind replacing either fossil fuels or bioenergy always increases total social cost substantially. No improvement in CCU or SDACCU equipment can change this conclusion while fossil fuel emissions exist, since carbon capture always incurs an equipment cost never incurred by wind, and carbon capture never reduces, instead mostly increases, air pollution and fuel mining, which wind eliminates. Once fossil fuel emissions end, CCU (for industry) and SDACCU social costs need to be evaluated against the social costs of natural reforestation and reducing nonenergy halogen, nitrous oxide, methane, and biomass burning emissions.
引用
收藏
页码:3567 / 3574
页数:8
相关论文
共 50 条
  • [1] Progress on direct air capture of carbon dioxide
    Song, Kechen
    Cui, Xili
    Xing, Huabin
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (03): : 1152 - 1162
  • [2] Progress on direct air capture of carbon dioxide
    Liao, Changjian
    Zhang, Kewei
    Wang, Jing
    Zeng, Xiangyu
    Jin, Ping
    Liu, Zhiyu
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (04): : 2031 - 2048
  • [3] Unconventional membranes for direct air carbon capture
    Gobina, Edward
    Giwa, Ayo
    Ben-Aron, Adam
    [J]. Membrane Technology, 2022, 2022 (07)
  • [4] The thermodynamics of direct air capture of carbon dioxide
    Lackner, Klaus S.
    [J]. ENERGY, 2013, 50 : 38 - 46
  • [5] Direct air capture is a dead duck for climate change
    Gellender, Martin
    [J]. NEW SCIENTIST, 2024, 247 (3497) : 29 - 29
  • [6] The role of direct air carbon capture in decarbonising aviation
    Gray, Nathan
    O'Shea, Richard
    Smyth, Beatrice
    Lens, Piet N. L.
    Murphy, Jerry D.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 199
  • [7] Recent progress on direct air capture of carbon dioxide
    Sun, Jialiang
    Zhao, Meng
    Huang, Liang
    Zhang, Tianyu
    Wang, Qiang
    [J]. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2023, 40
  • [8] Rail-based direct air carbon capture
    Bachman, E.
    Tavasoli, Alexandra
    Hatton, T. Alan
    Maravelias, Christos T.
    Haites, Erik
    Styring, Peter
    Aspuru-Guzik, Alan
    MacIntosh, Jeffrey
    Ozin, Geoffrey
    [J]. JOULE, 2022, 6 (07) : 1368 - 1381
  • [9] The perspective of direct air capture of atmospheric carbon dioxide
    Boretti, Alberto
    [J]. INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2022, 27 (02) : 193 - 201
  • [10] The prospect of direct air capture for energy security and climate stability
    Shayegh, Soheil
    [J]. FRONTIERS IN CHEMICAL ENGINEERING, 2023, 5