Oil slick monitoring using Sentinel-I SAR images

被引:0
|
作者
Rodrigues, Tomas [1 ,2 ]
Marques, Paulo [1 ,2 ]
机构
[1] Inst Super Engn Lisboa ISEL, Lisbon, Portugal
[2] Inst Telecomunicacoes IT, Lisbon, Portugal
关键词
D O I
10.23919/IRS51887.2021.9466231
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an algorithm developed in the context of an undergraduate degree of Informatics Engineering for the detection of oil slicks in images from a Synthetic Aperture Radar (SAR). Oil slicks represent a serious threat to the marine ecosystem in the coastal areas and SAR images have been increasingly used in the supervision of this environmental disaster, due to its numerous advantages when compared to images in the visible domain. The developed algorithm envisages simplicity and computational efficiency and is divided in four phases: land masking, statistical analysis of sea, detection of suspected oil slick locations, and final validation. The usage of amplitude SAR images, instead of Single Look Complex (SLC) ones, contributes to the overall low computational requirements. The obtained results are encouraging for real-world applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An Accurate Oil Slick Detection Method for SAR Images
    Zhang, Qian
    Huang, Yunlin
    Pei, Jifang
    Wu, Junjie
    Yang, Haiguang
    Yang, Jianyu
    [J]. 2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 549 - 552
  • [2] Monitoring the spatial dispersion of an oil slick by enhancing and noise-filtering SAR images using SENTINEL-1 satellite repeat-pass observations
    Karunathilake, Amila
    Ohashi, Makoto
    Kaneta, Shin-Ichi
    Chiba, Tatsuro
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (11) : 4187 - 4207
  • [3] A level set method for oil slick segmentation in SAR images
    Huang, B
    Li, H
    Huang, X
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (06) : 1145 - 1156
  • [4] OIL SLICK DETECTABILITY ALONG THE RANGE OF LARGE SWATH SAR IMAGES
    Cavagnero, M.
    Biamino, W.
    Borasi, M.
    Di Matteo, L.
    Trivero, P.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3266 - 3269
  • [5] Detection of oil slick signatures in SAR images by fusion of hysteresis thresholding responses
    Kanaa, TFN
    Tonye, E
    Mercier, G
    Onana, VP
    Ngono, JM
    Frison, PL
    Rudant, JP
    Garello, R
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2750 - 2752
  • [6] Intelligent system for feature extraction of oil slick in SAR images: Speckle filter analysis
    de Souza, Danilo L.
    Neto, Adriao D. D.
    da Mata, Wilson
    [J]. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 729 - 736
  • [7] An assessment of oil spill detection using Sentinel 1 SAR-C images
    Chaturvedi, Sudhir Kumar
    Banerjee, Saikat
    Lele, Shashank
    [J]. JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2020, 5 (02) : 116 - 135
  • [8] Unsupervised oil slick detection by SAR imagery using kernel expansion
    Mercier, G
    Girard-Ardhuin, F
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 494 - 497
  • [9] Oil slick detection by SAR imagery using support vector machines
    Mercier, G
    Girard-Ardhuin, F
    [J]. OCEANS 2005 - EUROPE, VOLS 1 AND 2, 2005, : 90 - 95
  • [10] Improving oil slick detection by SAR imagery using ancillary data
    Gonzalez Vilas, Luis
    Torres Palenzuela, Jesus M.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, PROCEEDINGS, VOLS 1-8, 2007, : 1657 - 1662