Circuit theory for decoherence in superconducting charge qubits

被引:30
|
作者
Burkard, G [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
D O I
10.1103/PhysRevB.71.144511
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits. In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative environment are taken into account. Moreover, both self- and mutual inductances of the circuit are fully included.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Suppressing charge noise decoherence in superconducting charge qubits
    Schreier, J. A.
    Houck, A. A.
    Koch, Jens
    Schuster, D. I.
    Johnson, B. R.
    Chow, J. M.
    Gambetta, J. M.
    Majer, J.
    Frunzio, L.
    Devoret, M. H.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW B, 2008, 77 (18)
  • [2] Optimal Control of Decoherence in the Quantum Circuit Containing Superconducting Qubits
    Ji, Yinghua
    Hu, Juju
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, : 240 - 243
  • [3] Decoherence benchmarking of superconducting qubits
    Jonathan J. Burnett
    Andreas Bengtsson
    Marco Scigliuzzo
    David Niepce
    Marina Kudra
    Per Delsing
    Jonas Bylander
    [J]. npj Quantum Information, 5
  • [4] Superconducting qubits II: Decoherence
    Wilhelm, F. K.
    Storcz, M. J.
    Hartmann, U.
    Geller, Michael R.
    [J]. MANIPULATING QUANTUM COHERENCE IN SOLID STATE SYSTEMS, 2007, 244 : 195 - +
  • [5] Decoherence benchmarking of superconducting qubits
    Burnett, Jonathan J.
    Bengtsson, Andreas
    Scigliuzzo, Marco
    Niepce, David
    Kudra, Marina
    Delsing, Per
    Bylander, Jonas
    [J]. NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [6] Quantum computing in decoherence-free subspaces with superconducting charge qubits
    Feng, Zhi-Bo
    Zhang, Xin-Ding
    [J]. PHYSICS LETTERS A, 2007, 372 (01) : 16 - 20
  • [7] Nonadditivity of decoherence rates in superconducting qubits
    Burkard, G
    Brito, F
    [J]. PHYSICAL REVIEW B, 2005, 72 (05):
  • [8] Materials Origins of Decoherence in Superconducting Qubits
    McDermott, Robert
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (01) : 2 - 13
  • [9] Dynamics of nonlocal correlation of two superconducting charge qubits induced by intrinsic decoherence
    Aljuaydi, Fahad
    Zidan, Nour
    Mohamed, A. -b. a.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 104 : 371 - 377
  • [10] Circuit QED and engineering charge-based superconducting qubits
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. PHYSICA SCRIPTA, 2009, T137