Gibbs random graphs on point processes

被引:2
|
作者
Ferrari, Pablo A. [1 ,4 ]
Pechersky, Eugene A. [2 ]
Sisko, Valentin V. [3 ]
Yambartsev, Anatoly A. [4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Dobrushin Lab, Moscow, Russia
[3] Univ Fed Fluminense, Inst Matemat & Stat, BR-24020140 Niteroi, RJ, Brazil
[4] Univ Sao Paulo, Dept Stat, Inst Math & Stat, BR-05508090 Sao Paulo, Brazil
关键词
D O I
10.1063/1.3514605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider a discrete locally finite subset Gamma of R-d and the cornplete graph (Gamma, E), with vertices Gamma and edges E. We consider Gibbs measures on the set of sub-graphs with vertices Gamma and edges E` subset of E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when Gamma is sampled from a homogeneous Poisson process; and (b) for a fixed Gamma with sufficiently sparse points. (c) 2010 American Institute of Physics. [doi:10.1063/1.3514605]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SPATIAL GIBBS RANDOM GRAPHS
    Mourrat, Jean-Christophe
    Valesin, Daniel
    [J]. ANNALS OF APPLIED PROBABILITY, 2018, 28 (02): : 751 - 789
  • [2] Recurrence or transience of random walks on random graphs generated by point processes in Rd
    Rousselle, Arnaud
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (12) : 4351 - 4374
  • [3] Graphical construction of spatial Gibbs random graphs
    Cerqueira, Andressa
    Garcia, Nancy L.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (04)
  • [4] Local limits of spatial Gibbs random graphs
    Endo, Eric O.
    Valesin, Daniel
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2020, 17 (01): : 51 - 63
  • [5] Annealed Invariance Principle for Random Walks on Random Graphs Generated by Point Processes in Rd
    Rousselle, A.
    [J]. MARKOV PROCESSES AND RELATED FIELDS, 2016, 22 (04) : 653 - 696
  • [6] CLUSTER EXPANSIONS FOR GIBBS POINT PROCESSES
    Jansen, S.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2019, 51 (04) : 1129 - 1178
  • [7] Introduction to the Theory of Gibbs Point Processes
    Dereudre, David
    [J]. STOCHASTIC GEOMETRY: MODERN RESEARCH FRONTIERS, 2019, 2237 : 181 - 229
  • [8] Continuum percolation for Gibbs point processes
    Stucki, Kaspar
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 10
  • [9] Limits of discrete distributions and Gibbs measures on random graphs
    Coja-Oghlan, A.
    Perkins, W.
    Skubch, K.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2017, 66 : 37 - 59
  • [10] Gibbs measures and phase transitions on sparse random graphs
    Dembo, Amir
    Montanani, Andrea
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2010, 24 (02) : 137 - 211