A Yang-Baxter integrable cellular automaton with a four site update rule

被引:22
|
作者
Pozsgay, Balazs [1 ]
机构
[1] Eotvos Lorand Univ, Dept Theoret Phys, MTA ELTE Momentum Integrable Quantum Dynam Res Gr, Budapest, Hungary
关键词
integrability; cellular automaton; Yang-Baxter equation; MODELS; CHAIN;
D O I
10.1088/1751-8121/ac1dbf
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a one dimensional reversible block cellular automaton, where the time evolution is dictated by a period 3 cycle of update rules. At each time step a subset of the cells is updated using a four site rule with two control bits and two action bits. The model displays rich dynamics. There are three types of stable particles, left movers, right movers and 'frozen' bound states that only move as an effect of scattering with the left and rightmovers. Multi-particle scattering in the system is factorized. We embed the model into the canonical framework of Yang-Baxter integrability by rigorously proving the existence of a commuting set of diagonal-to-diagonal transfer matrices. The construction involves a new type of Lax operator.
引用
收藏
页数:19
相关论文
共 43 条
  • [1] Yang-Baxter integrable Lindblad equations
    Ziolkowska, Aleksandra A.
    Essler, Fabian H. L.
    SCIPOST PHYSICS, 2020, 8 (03):
  • [2] Yang-Baxter maps and integrable dynamics
    Veselov, AP
    PHYSICS LETTERS A, 2003, 314 (03) : 214 - 221
  • [3] Yang-Baxter integrable dimers on a strip
    Pearce, Paul A.
    Rasmussen, Jorgen
    Vittorini-Orgeas, Alessandra
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (01):
  • [4] From Yang-Baxter Maps to Integrable Recurrences
    B. Grammaticos
    A. Ramani
    C.-M. Viallet
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 260 - 270
  • [5] From Yang-Baxter Maps to Integrable Recurrences
    Grammaticos, B.
    Ramani, A.
    Viallet, C. -M.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (02) : 260 - 270
  • [6] Integrable Defects and Backlund Transformations in Yang-Baxter Models
    Demulder, Saskia
    Raml, Thomas
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2022, 70 (04):
  • [7] Yang-Baxter algebra and generation of quantum integrable models
    A. Kundu
    Theoretical and Mathematical Physics, 2007, 151 : 831 - 842
  • [8] Yang-Baxter algebra and generation of quantum integrable models
    Kundu, A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (03) : 831 - 842
  • [9] CLASSICAL YANG-BAXTER EQUATIONS AND QUANTUM INTEGRABLE SYSTEMS
    JURCO, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) : 1289 - 1293
  • [10] YANG-BAXTER ALGEBRAS, INTEGRABLE THEORIES AND QUANTUM GROUPS
    DEVEGA, HJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (10): : 2371 - 2463